These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32825407)

  • 1. Estimation of the Structural and Geomechanical Anisotropy in Fault Gouges Using 3D Micro-Computed Tomography (μ-CT).
    Yang E; Yun TS; Kim KY; Moon SW; Seo YS
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32825407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Healing Behavior of Simulated Fault Gouges From the Groningen Gas Field and Implications for Induced Fault Reactivation.
    Hunfeld LB; Chen J; Hol S; Niemeijer AR; Spiers CJ
    J Geophys Res Solid Earth; 2020 Jul; 125(7):e2019JB018790. PubMed ID: 32728508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fault rock heterogeneity can produce fault weakness and reduce fault stability.
    Bedford JD; Faulkner DR; Lapusta N
    Nat Commun; 2022 Jan; 13(1):326. PubMed ID: 35039494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydro-mechanical coupling characteristics and weakening mechanisms of filling joint resulting from water injection.
    Liu Y; Xu C; Xu J; Zeng X
    Sci Rep; 2022 Dec; 12(1):21957. PubMed ID: 36535996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Discrete Elements Study of the Frictional Behavior of Fault Gouges.
    Papachristos E; Stefanou I; Sulem J
    J Geophys Res Solid Earth; 2023 Jan; 128(1):e2022JB025209. PubMed ID: 37035577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleation of Stick-Slip Instability Within a Large-Scale Experimental Fault: Effects of Stress Heterogeneities Due to Loading and Gouge Layer Compaction.
    Buijze L; Guo Y; Niemeijer AR; Ma S; Spiers CJ
    J Geophys Res Solid Earth; 2020 Aug; 125(8):e2019JB018429. PubMed ID: 32999804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Palaeopermeability anisotropy and geometrical properties of sealed-microfractures from micro-CT analyses: An open-source implementation.
    Gomila R; Arancibia G; Mery D; Nehler M; Bracke R; Morata D
    Micron; 2019 Feb; 117():29-39. PubMed ID: 30458300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An unload-induced direct-shear model for granular gouge friction in rock discontinuities.
    Wu W; Zou Y; Li X; Zhao J
    Rev Sci Instrum; 2014 Sep; 85(9):093902. PubMed ID: 25273734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The Characteristics and Significance of Deep Fault Gouge from the Weilasituo Zinc-Copper Polymetallic Deposit in Inner Mongolia].
    Luo SY; Cao JJ; Yi ZB; Jiang T; Wang ZY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1508-13. PubMed ID: 30001051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragmentation and shear band formation by slow compression of brittle porous media.
    Pál G; Jánosi Z; Kun F; Main IG
    Phys Rev E; 2016 Nov; 94(5-1):053003. PubMed ID: 27967008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow-to-Friction Transition in Simulated Calcite Gouge: Experiments and Microphysical Modeling.
    Chen J; Verberne BA; Niemeijer AR
    J Geophys Res Solid Earth; 2020 Nov; 125(11):e2020JB019970. PubMed ID: 33381362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [X-ray diffraction and infrared spectrum analysis of fault gouge in Wenchuan seismic belt].
    Wang ZY; Cao JJ; Luo SY; Liao YP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 May; 34(5):1416-20. PubMed ID: 25095450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron Spin Resonance (ESR) Dating of Calcareous Fault Gouge of the Ushikubi Fault, Central Japan.
    Fantong EB; Takeuchi A; Doke R
    Appl Magn Reson; 2013; 44(9):1105-1123. PubMed ID: 23914073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scale dependence of rock friction at high work rate.
    Yamashita F; Fukuyama E; Mizoguchi K; Takizawa S; Xu S; Kawakata H
    Nature; 2015 Dec; 528(7581):254-7. PubMed ID: 26659187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fault Dynamics of the 1999 Chi-Chi earthquake: clues from nanometric geochemical analysis of fault gouges.
    Li WH; Lee CH; Ma MH; Huang PJ; Wu SY
    Sci Rep; 2019 Apr; 9(1):5683. PubMed ID: 30952874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two sides of a fault: Grain-scale analysis of pore pressure control on fault slip.
    Yang Z; Juanes R
    Phys Rev E; 2018 Feb; 97(2-1):022906. PubMed ID: 29548217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates.
    Proctor BP; Mitchell TM; Hirth G; Goldsby D; Zorzi F; Platt JD; Di Toro G
    J Geophys Res Solid Earth; 2014 Nov; 119(11):8107-8131. PubMed ID: 26167425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical characterization of fault rocks within the Opalinus Clay formation.
    Orellana LF; Nussbaum C; Grafulha L; Henry P; Violay M
    Sci Rep; 2022 Mar; 12(1):4389. PubMed ID: 35288596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fault weakening and earthquake instability by powder lubrication.
    Reches Z; Lockner DA
    Nature; 2010 Sep; 467(7314):452-5. PubMed ID: 20865001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-thin clay layers facilitate seismic slip in carbonate faults.
    Smeraglia L; Billi A; Carminati E; Cavallo A; Di Toro G; Spagnuolo E; Zorzi F
    Sci Rep; 2017 Apr; 7(1):664. PubMed ID: 28386064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.