These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 32825662)
1. Asymmetric Conservation within Pairs of Co-Occurred Motifs Mediates Weak Direct Binding of Transcription Factors in ChIP-Seq Data. Levitsky V; Oshchepkov D; Zemlyanskaya E; Merkulova T Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825662 [TBL] [Abstract][Full Text] [Related]
2. Web-MCOT Server for Motif Co-Occurrence Search in ChIP-Seq Data. Levitsky VG; Mukhin AM; Oshchepkov DY; Zemlyanskaya EV; Lashin SA Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012247 [TBL] [Abstract][Full Text] [Related]
3. A single ChIP-seq dataset is sufficient for comprehensive analysis of motifs co-occurrence with MCOT package. Levitsky V; Zemlyanskaya E; Oshchepkov D; Podkolodnaya O; Ignatieva E; Grosse I; Mironova V; Merkulova T Nucleic Acids Res; 2019 Dec; 47(21):e139. PubMed ID: 31750523 [TBL] [Abstract][Full Text] [Related]
4. Non-targeted transcription factors motifs are a systemic component of ChIP-seq datasets. Worsley Hunt R; Wasserman WW Genome Biol; 2014 Jul; 15(7):412. PubMed ID: 25070602 [TBL] [Abstract][Full Text] [Related]
5. Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs. Berger S; Pachkov M; Arnold P; Omidi S; Kelley N; Salatino S; van Nimwegen E Genome Res; 2019 Jul; 29(7):1164-1177. PubMed ID: 31138617 [TBL] [Abstract][Full Text] [Related]
6. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data. He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545 [TBL] [Abstract][Full Text] [Related]
7. Analysis of Co-Associated Transcription Factors via Ordered Adjacency Differences on Motif Distribution. Pan G; Tang J; Guo F Sci Rep; 2017 Feb; 7():43597. PubMed ID: 28240320 [TBL] [Abstract][Full Text] [Related]
8. Cell-type and transcription factor specific enrichment of transcriptional cofactor motifs in ENCODE ChIP-seq data. Goi C; Little P; Xie C BMC Genomics; 2013; 14 Suppl 5(Suppl 5):S2. PubMed ID: 24564528 [TBL] [Abstract][Full Text] [Related]
9. Transcription factor-binding k-mer analysis clarifies the cell type dependency of binding specificities and cis-regulatory SNPs in humans. Tahara S; Tsuchiya T; Matsumoto H; Ozaki H BMC Genomics; 2023 Oct; 24(1):597. PubMed ID: 37805453 [TBL] [Abstract][Full Text] [Related]
10. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example. Cheng CY; Chu CH; Hsu HW; Hsu FR; Tang CY; Wang WC; Kung HJ; Chang PC BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S1. PubMed ID: 24564277 [TBL] [Abstract][Full Text] [Related]
11. Discovering unknown human and mouse transcription factor binding sites and their characteristics from ChIP-seq data. Yu CP; Kuo CH; Nelson CW; Chen CA; Soh ZT; Lin JJ; Hsiao RX; Chang CY; Li WH Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33975951 [TBL] [Abstract][Full Text] [Related]
12. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets. Ha N; Polychronidou M; Lohmann I PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209 [TBL] [Abstract][Full Text] [Related]
13. Uncovering uncharacterized binding of transcription factors from ATAC-seq footprinting data. Schultheis H; Bentsen M; Heger V; Looso M Sci Rep; 2024 Apr; 14(1):9275. PubMed ID: 38654130 [TBL] [Abstract][Full Text] [Related]
14. Discovering human transcription factor physical interactions with genetic variants, novel DNA motifs, and repetitive elements using enhanced yeast one-hybrid assays. Shrestha S; Sewell JA; Santoso CS; Forchielli E; Carrasco Pro S; Martinez M; Fuxman Bass JI Genome Res; 2019 Sep; 29(9):1533-1544. PubMed ID: 31481462 [TBL] [Abstract][Full Text] [Related]
15. Peak Scores Significantly Depend on the Relationships between Contextual Signals in ChIP-Seq Peaks. Vishnevsky OV; Bocharnikov AV; Ignatieva EV Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38256085 [TBL] [Abstract][Full Text] [Related]
16. FisherMP: fully parallel algorithm for detecting combinatorial motifs from large ChIP-seq datasets. Zhang S; Liang Y; Wang X; Su Z; Chen Y DNA Res; 2019 Jun; 26(3):231-242. PubMed ID: 30957858 [TBL] [Abstract][Full Text] [Related]
17. Identifying transcription factors with cell-type specific DNA binding signatures. Awdeh A; Turcotte M; Perkins TJ BMC Genomics; 2024 Oct; 25(1):957. PubMed ID: 39402535 [TBL] [Abstract][Full Text] [Related]
18. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Wang J; Zhuang J; Iyer S; Lin X; Whitfield TW; Greven MC; Pierce BG; Dong X; Kundaje A; Cheng Y; Rando OJ; Birney E; Myers RM; Noble WS; Snyder M; Weng Z Genome Res; 2012 Sep; 22(9):1798-812. PubMed ID: 22955990 [TBL] [Abstract][Full Text] [Related]
19. Improved linking of motifs to their TFs using domain information. Baumgarten N; Schmidt F; Schulz MH Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324 [TBL] [Abstract][Full Text] [Related]
20. hTFtarget: A Comprehensive Database for Regulations of Human Transcription Factors and Their Targets. Zhang Q; Liu W; Zhang HM; Xie GY; Miao YR; Xia M; Guo AY Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):120-128. PubMed ID: 32858223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]