BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32825903)

  • 1. From children's toy to versatile sensor: One-step doping of Play-Doh with primary amino group for explosive detection both on surfaces and in solution.
    Yang S; Fan W; Cheng H; Gong Z; Wang D; Fan M; Huang B
    Anal Chim Acta; 2020 Sep; 1128():193-202. PubMed ID: 32825903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemically modified mesoporous wood: a versatile sensor for visual colorimetric detection of trinitrotoluene in water, air, and soil by smartphone camera.
    Zhang Y; Cai Y; Dong F; Bian L; Li H; Wang J; Du J; Qi X; He Y
    Anal Bioanal Chem; 2019 Dec; 411(30):8063-8071. PubMed ID: 31768592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diaminocyclohexane-Functionalized/Thioglycolic Acid-Modified Gold Nanoparticle-Based Colorimetric Sensing of Trinitrotoluene and Tetryl.
    Ular N; Üzer A; Durmazel S; Erçağ E; Apak R
    ACS Sens; 2018 Nov; 3(11):2335-2342. PubMed ID: 30350589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colorimetric paper sensor for sensitive detection of explosive nitroaromatics based on Au@Ag nanoparticles.
    Arshad A; Wang H; Bai X; Jiang R; Xu S; Wang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():16-22. PubMed ID: 30077892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trace Explosive Detection Based on Photonic Crystal Amplified Fluorescence.
    Chen X; Zhang X; Wang H; Zhang L; Zhu J
    Chemistry; 2023 Mar; 29(17):e202203605. PubMed ID: 36533378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Sensitive Ratiometric Fluorescent Sensor for Trinitrotoluene Based on the Inner Filter Effect between Gold Nanoparticles and Fluorescent Nanoparticles.
    Lu H; Quan S; Xu S
    J Agric Food Chem; 2017 Nov; 65(44):9807-9814. PubMed ID: 29068213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethylenediamine-bound magnetite nanoparticles as dual function colorimetric sensor having charge transfer and nanozyme activity for TNT and tetryl detection.
    Yardımcı B; Koç ÖK; Üzer A; Hızal J; Apak R
    Mikrochim Acta; 2021 Jun; 188(7):228. PubMed ID: 34115203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Planar Is Better: Monodisperse Three-Layered MoS
    Zhu H; Zhang H; Xia Y
    Anal Chem; 2018 Mar; 90(6):3942-3949. PubMed ID: 29429339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tb-doped BSA-gold nanoclusters as a bimodal probe for the selective detection of TNT.
    Anju SM; Anjana RK; Vijila NS; Aswathy AO; Jayakrishna J; Anjitha B; Anjalidevi JS; Adhya S; George S
    Anal Bioanal Chem; 2020 Jul; 412(17):4165-4172. PubMed ID: 32356098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-cysteine-capped CdTe QD-based sensor for simple and selective detection of trinitrotoluene.
    Chen Y; Chen Z; He Y; Lin H; Sheng P; Liu C; Luo S; Cai Q
    Nanotechnology; 2010 Mar; 21(12):125502. PubMed ID: 20203361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attogram sensing of trinitrotoluene with a self-assembled molecular gelator.
    Kartha KK; Babu SS; Srinivasan S; Ajayaghosh A
    J Am Chem Soc; 2012 Mar; 134(10):4834-41. PubMed ID: 22352376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective spectrophotometric determination of TNT using a dicyclohexylamine-based colorimetric sensor.
    Erçağ E; Uzer A; Apak R
    Talanta; 2009 May; 78(3):772-80. PubMed ID: 19269427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection.
    Ma Y; Li H; Peng S; Wang L
    Anal Chem; 2012 Oct; 84(19):8415-21. PubMed ID: 22946839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Optoelectrochemical Sensor for Superselective Detection of 2,4,6-Trinitrotoluene Based on Electrochemical Reduced Meisenheimer Complex.
    Alizadeh N; Ghoorchian A
    Anal Chem; 2018 Sep; 90(17):10360-10368. PubMed ID: 30067894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folic Acid as a Bimodal Optical Probe for the Detection of TNT.
    Vijila NS; Athira M; Madanan Anju S; Aswathy AO; Jayakrishna J; Sreekumar M; Anjali Devi JS; Anjitha B; George S
    J Fluoresc; 2021 Jul; 31(4):933-940. PubMed ID: 33782809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smartphone-Enabled Colorimetric Trinitrotoluene Detection Using Amine-Trapped Polydimethylsiloxane Membranes.
    Tang N; Mu L; Qu H; Wang Y; Duan X; Reed MA
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14445-14452. PubMed ID: 28383246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional Flexible SERS Sensor on a Fixate Gel Pad: Capturing, Derivation, and Selective Picogram Indirect Detection of Explosive 2,2',4,4',6,6'-Hexanitrostilbene.
    Fan W; Yang S; Zhang Y; Huang B; Gong Z; Wang D; Fan M
    ACS Sens; 2020 Nov; 5(11):3599-3606. PubMed ID: 33155795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly selective and sensitive fluorescent zeolitic imidazole frameworks sensor for nitroaromatic explosive detection.
    Abuzalat O; Wong D; Park SS; Kim S
    Nanoscale; 2020 Jul; 12(25):13523-13530. PubMed ID: 32555819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon resonance immunosensor for highly sensitive detection of 2,4,6-trinitrotoluene.
    Shankaran DR; Gobi KV; Sakai T; Matsumoto K; Toko K; Miura N
    Biosens Bioelectron; 2005 Mar; 20(9):1750-6. PubMed ID: 15681190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemiluminescence detection of TNT by resonance energy transfer through the formation of a TNT-amine complex.
    Qi W; Xu M; Pang L; Liu Z; Zhang W; Majeed S; Xu G
    Chemistry; 2014 Apr; 20(16):4829-35. PubMed ID: 24596312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.