These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32825903)

  • 61. Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles.
    Goh MS; Pumera M
    Anal Bioanal Chem; 2011 Jan; 399(1):127-31. PubMed ID: 21046081
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Synthesis of Nitrogen-Doped Graphene Quantum Dots at Low Temperature for Electrochemical Sensing Trinitrotoluene.
    Cai Z; Li F; Wu P; Ji L; Zhang H; Cai C; Gervasio DF
    Anal Chem; 2015 Dec; 87(23):11803-11. PubMed ID: 26545150
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (gold nanorod)-(quantum dots) assembly.
    Xia Y; Song L; Zhu C
    Anal Chem; 2011 Feb; 83(4):1401-7. PubMed ID: 21261282
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The analysis of nitrate explosive vapour samples using Lab-on-a-chip instrumentation.
    Taranto V; Ueland M; Forbes SL; Blanes L
    J Chromatogr A; 2019 Sep; 1602():467-473. PubMed ID: 31178161
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Iptycene-based fluorescent sensors for nitroaromatics and TNT.
    Anzenbacher P; Mosca L; Palacios MA; Zyryanov GV; Koutnik P
    Chemistry; 2012 Oct; 18(40):12712-8. PubMed ID: 22930534
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Detection of 2,4,6-trinitrotoluene in seawater using a reversed-displacement immunosensor.
    Green TM; Charles PT; Anderson GP
    Anal Biochem; 2002 Nov; 310(1):36-41. PubMed ID: 12413470
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Multiple tier detection of TNT using curcumin functionalized silver nanoparticles.
    Raza A; Biswas A; Zehra A; Mengesha A
    Forensic Sci Int Synerg; 2020; 2():240-247. PubMed ID: 32885162
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Multifunctional inorganic-organic hybrid nanospheres for rapid and selective luminescence detection of TNT in mixed nitroaromatics via magnetic separation.
    Ma Y; Huang S; Wang L
    Talanta; 2013 Nov; 116():535-40. PubMed ID: 24148441
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Designing an ultra-sensitive aptasensor based on an AgNPs/thiol-GQD nanocomposite for TNT detection at femtomolar levels using the electrochemical oxidation of Rutin as a redox probe.
    Shahdost-Fard F; Roushani M
    Biosens Bioelectron; 2017 Jan; 87():724-731. PubMed ID: 27649328
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT.
    Fan L; Hu Y; Wang X; Zhang L; Li F; Han D; Li Z; Zhang Q; Wang Z; Niu L
    Talanta; 2012 Nov; 101():192-7. PubMed ID: 23158311
    [TBL] [Abstract][Full Text] [Related]  

  • 71. ZnO-Ag hybrids for ultrasensitive detection of trinitrotoluene by surface-enhanced Raman spectroscopy.
    He X; Wang H; Li Z; Chen D; Zhang Q
    Phys Chem Chem Phys; 2014 Jul; 16(28):14706-12. PubMed ID: 24920315
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Multi-channeled single chain variable fragment (scFv) based microfluidic device for explosives detection.
    Charles PT; Davis J; Adams AA; Anderson GP; Liu JL; Deschamps JR; Kusterbeck AW
    Talanta; 2015 Nov; 144():439-44. PubMed ID: 26452845
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Near infrared optical biosensor based on peptide functionalized single-walled carbon nanotubes hybrids for 2,4,6-trinitrotoluene (TNT) explosive detection.
    Wang J
    Anal Biochem; 2018 Jun; 550():49-53. PubMed ID: 29655769
    [TBL] [Abstract][Full Text] [Related]  

  • 74. New Chitosan-Thiomer: An Efficient Colorimetric Sensor and Effective Sorbent for Mercury at Ultralow Concentration.
    Chauhan K; Singh P; Singhal RK
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26069-78. PubMed ID: 26575432
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ionic liquid-graphene hybrid nanosheets as an enhanced material for electrochemical determination of trinitrotoluene.
    Guo S; Wen D; Zhai Y; Dong S; Wang E
    Biosens Bioelectron; 2011 Apr; 26(8):3475-81. PubMed ID: 21333522
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Self-assembled TNT biosensor based on modular multifunctional surface-tethered components.
    Medintz IL; Goldman ER; Lassman ME; Hayhurst A; Kusterbeck AW; Deschamps JR
    Anal Chem; 2005 Jan; 77(2):365-72. PubMed ID: 15649029
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A reversible dual-response fluorescence switch for the detection of multiple analytes.
    Geng J; Liu P; Liu B; Guan G; Zhang Z; Han MY
    Chemistry; 2010 Mar; 16(12):3720-7. PubMed ID: 20151433
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Graphite sheet as a novel material for the collection and electrochemical sensing of explosive residues.
    Castro SVF; Cardoso RM; Santana MHP; Richter EM; Munoz RAA
    Talanta; 2019 Oct; 203():106-111. PubMed ID: 31202314
    [TBL] [Abstract][Full Text] [Related]  

  • 79. High uptake of 2,4,6-trinitrotoluene by vetiver grass--potential for phytoremediation?
    Makris KC; Shakya KM; Datta R; Sarkar D; Pachanoor D
    Environ Pollut; 2007 Mar; 146(1):1-4. PubMed ID: 16899329
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Selective Determination of Trinitrotoluene Based on Energy Transfer between Carbon Dots and Gold Nanoparticles.
    Oskoei YM; Fattahi H; Hassanzadeh J; Azar AM
    Anal Sci; 2016; 32(2):193-9. PubMed ID: 26860565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.