These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32826524)

  • 1. Quantitative Bias Analysis for a Misclassified Confounder: A Comparison Between Marginal Structural Models and Conditional Models for Point Treatments.
    Nab L; Groenwold RHH; van Smeden M; Keogh RH
    Epidemiology; 2020 Nov; 31(6):796-805. PubMed ID: 32826524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams.
    Yu Y; Li H; Sun X; Su P; Wang T; Liu Y; Yuan Z; Liu Y; Xue F
    BMC Med Res Methodol; 2017 Dec; 17(1):177. PubMed ID: 29281984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Missing Data in Marginal Structural Models: A Plasmode Simulation Study Comparing Multiple Imputation and Inverse Probability Weighting.
    Liu SH; Chrysanthopoulou SA; Chang Q; Hunnicutt JN; Lapane KL
    Med Care; 2019 Mar; 57(3):237-243. PubMed ID: 30664611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model misspecification and bias for inverse probability weighting estimators of average causal effects.
    Waernbaum I; Pazzagli L
    Biom J; 2023 Feb; 65(2):e2100118. PubMed ID: 36045099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation from a known Cox MSM using standard parametric models for the g-formula.
    Young JG; Tchetgen Tchetgen EJ
    Stat Med; 2014 Mar; 33(6):1001-14. PubMed ID: 24151138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of methods to estimate the survivor average causal effect in the presence of missing data: a simulation study.
    McGuinness MB; Kasza J; Karahalios A; Guymer RH; Finger RP; Simpson JA
    BMC Med Res Methodol; 2019 Dec; 19(1):223. PubMed ID: 31795945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing mediation using marginal structural models in the presence of confounding and moderation.
    Coffman DL; Zhong W
    Psychol Methods; 2012 Dec; 17(4):642-64. PubMed ID: 22905648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating longitudinal data from marginal structural models using the additive hazard model.
    Keogh RH; Seaman SR; Gran JM; Vansteelandt S
    Biom J; 2021 Oct; 63(7):1526-1541. PubMed ID: 33983641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Missing confounding data in marginal structural models: a comparison of inverse probability weighting and multiple imputation.
    Moodie EE; Delaney JA; Lefebvre G; Platt RW
    Int J Biostat; 2008; 4(1):Article 13. PubMed ID: 22462119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of outcome model misspecification on regression and doubly-robust inverse probability weighting to estimate causal effect.
    Lefebvre G; Gustafson P
    Int J Biostat; 2010; 6(2):Article 15. PubMed ID: 21969999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating and correcting for confounder misclassification.
    Savitz DA; Barón AE
    Am J Epidemiol; 1989 May; 129(5):1062-71. PubMed ID: 2705426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of the marginal structural cox model for estimating individual and joined effects of treatments given in combination.
    Lusivika-Nzinga C; Selinger-Leneman H; Grabar S; Costagliola D; Carrat F
    BMC Med Res Methodol; 2017 Dec; 17(1):160. PubMed ID: 29202691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postmyocardial Infarction Statin Exposure and the Risk of Stroke with Weighting for Outcome Misclassification.
    Gravel CA; Filion KB; Reynier PM; Platt RW
    Epidemiology; 2020 Nov; 31(6):880-888. PubMed ID: 33003152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Causal inference in survival analysis using longitudinal observational data: Sequential trials and marginal structural models.
    Keogh RH; Gran JM; Seaman SR; Davies G; Vansteelandt S
    Stat Med; 2023 Jun; 42(13):2191-2225. PubMed ID: 37086186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncollapsibility and its role in quantifying confounding bias in logistic regression.
    Schuster NA; Twisk JWR; Ter Riet G; Heymans MW; Rijnhart JJM
    BMC Med Res Methodol; 2021 Jul; 21(1):136. PubMed ID: 34225653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Simulation Study Comparing the Performance of Time-Varying Inverse Probability Weighting and G-Computation in Survival Analysis.
    Rudolph JE; Schisterman EF; Naimi AI
    Am J Epidemiol; 2023 Jan; 192(1):102-110. PubMed ID: 36124667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bias and Type I error Control in Correcting Treatment Effect for Treatment Switching Using Marginal Structural Models in Phase III Oncology Trials.
    Xu J; Liu G; Wang B
    J Biopharm Stat; 2022 Nov; 32(6):897-914. PubMed ID: 35656809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling time-varying exposure using inverse probability of treatment weights.
    Grafféo N; Latouche A; Geskus RB; Chevret S
    Biom J; 2018 Mar; 60(2):323-332. PubMed ID: 29280181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovering true risks when multilevel exposure and covariables are both misclassified.
    Weinkam JJ; Rosenbaum WL; Sterling TD
    Am J Epidemiol; 1999 Oct; 150(8):886-91. PubMed ID: 10522660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.