These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 32826910)

  • 1. A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes.
    Piazza I; Beaton N; Bruderer R; Knobloch T; Barbisan C; Chandat L; Sudau A; Siepe I; Rinner O; de Souza N; Picotti P; Reiter L
    Nat Commun; 2020 Aug; 11(1):4200. PubMed ID: 32826910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermostability-assisted limited proteolysis-coupled mass spectrometry for capturing drug target proteins and sites.
    Yang L; Guo CW; Luo QM; Guo ZF; Chen L; Ishihama Y; Li P; Yang H; Gao W
    Anal Chim Acta; 2024 Jul; 1312():342755. PubMed ID: 38834267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteome-Wide Deconvolution of Drug Targets and Binding Sites by Lysine Reactivity Profiling.
    Ruan C; Zhou J; Li Z; Li K; Fang Z; Zhang X; Ye M
    Anal Chem; 2022 Feb; 94(7):3352-3359. PubMed ID: 35147412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limited Proteolysis-Mass Spectrometry to Identify Metabolite-Protein Interactions.
    Holfeld A; Quast JP; Bruderer R; Reiter L; de Souza N; Picotti P
    Methods Mol Biol; 2023; 2554():69-89. PubMed ID: 36178621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability-based approaches in chemoproteomics.
    George AL; Dueñas ME; Marín-Rubio JL; Trost M
    Expert Rev Mol Med; 2024 Apr; 26():e6. PubMed ID: 38604802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reimagining Druggability Using Chemoproteomic Platforms.
    Spradlin JN; Zhang E; Nomura DK
    Acc Chem Res; 2021 Apr; 54(7):1801-1813. PubMed ID: 33733731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical proteomics: terra incognita for novel drug target profiling.
    Huang F; Zhang B; Zhou S; Zhao X; Bian C; Wei Y
    Chin J Cancer; 2012 Nov; 31(11):507-18. PubMed ID: 22640626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target Deconvolution by Limited Proteolysis Coupled to Mass Spectrometry.
    Reber V; Gstaiger M
    Methods Mol Biol; 2023; 2706():177-190. PubMed ID: 37558949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning models for drug-target interactions: current knowledge and future directions.
    D'Souza S; Prema KV; Balaji S
    Drug Discov Today; 2020 Apr; 25(4):748-756. PubMed ID: 32171918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry.
    Schopper S; Kahraman A; Leuenberger P; Feng Y; Piazza I; Müller O; Boersema PJ; Picotti P
    Nat Protoc; 2017 Nov; 12(11):2391-2410. PubMed ID: 29072706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoproteomics and Chemical Probes for Target Discovery.
    Drewes G; Knapp S
    Trends Biotechnol; 2018 Dec; 36(12):1275-1286. PubMed ID: 30017093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemoproteomic approaches to drug target identification and drug profiling.
    Bantscheff M; Drewes G
    Bioorg Med Chem; 2012 Mar; 20(6):1973-8. PubMed ID: 22130419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian machine learning approach for drug target identification using diverse data types.
    Madhukar NS; Khade PK; Huang L; Gayvert K; Galletti G; Stogniew M; Allen JE; Giannakakou P; Elemento O
    Nat Commun; 2019 Nov; 10(1):5221. PubMed ID: 31745082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics-based strategies in kinase drug discovery.
    Bantscheff M; Hopf C; Kruse U; Drewes G
    Ernst Schering Found Symp Proc; 2007; (3):1-28. PubMed ID: 18512284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target deconvolution of bioactive small molecules: the heart of chemical biology and drug discovery.
    Jung HJ; Kwon HJ
    Arch Pharm Res; 2015 Sep; 38(9):1627-41. PubMed ID: 26040984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An isothermal shift assay for proteome scale drug-target identification.
    Ball KA; Webb KJ; Coleman SJ; Cozzolino KA; Jacobsen J; Jones KR; Stowell MHB; Old WM
    Commun Biol; 2020 Feb; 3(1):75. PubMed ID: 32060372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysine-Targeted Inhibitors and Chemoproteomic Probes.
    Cuesta A; Taunton J
    Annu Rev Biochem; 2019 Jun; 88():365-381. PubMed ID: 30633551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass Spectrometry-Based Chemical Proteomics for Drug Target Discoveries.
    Fedorov II; Lineva VI; Tarasova IA; Gorshkov MV
    Biochemistry (Mosc); 2022 Sep; 87(9):983-994. PubMed ID: 36180990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemoproteomic-enabled phenotypic screening.
    Conway LP; Li W; Parker CG
    Cell Chem Biol; 2021 Mar; 28(3):371-393. PubMed ID: 33577749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.