These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32827495)

  • 21. Effect of high-fat diet on cerebral pathological changes of cerebral small vessel disease in SHR/SP rats.
    Zhang Y; Sheikh AM; Tabassum S; Iwasa K; Shibly AZ; Zhou X; Wang R; Bhuiya J; Abdullah FB; Yano S; Aoki Y; Nagai A
    Geroscience; 2024 Aug; 46(4):3779-3800. PubMed ID: 38319539
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-Cell Mapping of Large and Small Arteries During Hypertensive Aging.
    Cheng J; Wu H; Xie C; He Y; Mou R; Zhang H; Yang Y; Xu Q
    J Gerontol A Biol Sci Med Sci; 2024 Feb; 79(2):. PubMed ID: 37531301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural changes in cerebral arteries following nitric oxide deprivation: a comparison between normotensive and hypertensive rats.
    Hsieh NK; Wang JY; Liu JC; Lee WH; Chen HI
    Thromb Haemost; 2004 Jul; 92(1):162-70. PubMed ID: 15213857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impaired peroxisome proliferator-activated receptor-gamma contributes to phenotypic modulation of vascular smooth muscle cells during hypertension.
    Zhang L; Xie P; Wang J; Yang Q; Fang C; Zhou S; Li J
    J Biol Chem; 2010 Apr; 285(18):13666-77. PubMed ID: 20212046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of extracellular matrix on phenotype modulation and MAPK transduction of rat aortic smooth muscle cells in vitro.
    Qin H; Ishiwata T; Wang R; Kudo M; Yokoyama M; Naito Z; Asano G
    Exp Mol Pathol; 2000 Oct; 69(2):79-90. PubMed ID: 11001858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The transition of smooth muscle cells from a contractile to a migratory, phagocytic phenotype: direct demonstration of phenotypic modulation.
    Sandison ME; Dempster J; McCarron JG
    J Physiol; 2016 Nov; 594(21):6189-6209. PubMed ID: 27393389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ROCK controls matrix synthesis in vascular smooth muscle cells: coupling vasoconstriction to vascular remodeling.
    Chapados R; Abe K; Ihida-Stansbury K; McKean D; Gates AT; Kern M; Merklinger S; Elliott J; Plant A; Shimokawa H; Jones PL
    Circ Res; 2006 Oct; 99(8):837-44. PubMed ID: 16990566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced survival of vascular smooth muscle cells accounts for heightened elastin deposition in arteries of neonatal spontaneously hypertensive rats.
    Arribas SM; Hermida C; González MC; Wang Y; Hinek A
    Exp Physiol; 2010 Apr; 95(4):550-60. PubMed ID: 20008031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel rat model of cerebral small vessel disease based on vascular risk factors of hypertension, aging, and cerebral hypoperfusion.
    Meng P; Liu T; Zhong Z; Fang R; Qiu F; Luo Y; Yang K; Cai H; Mei Z; Zhang X; Ge J
    Hypertens Res; 2024 Aug; 47(8):2195-2210. PubMed ID: 38872026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. White matter lesions and alteration of vascular cell composition in the brain of spontaneously hypertensive rats.
    Lin JX; Tomimoto H; Akiguchi I; Wakita H; Shibasaki H; Horie R
    Neuroreport; 2001 Jul; 12(9):1835-9. PubMed ID: 11435908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitogen-activated protein/extracellular signal-regulated kinase inhibition attenuates angiotensin II-mediated signaling and contraction in spontaneously hypertensive rat vascular smooth muscle cells.
    Touyz RM; El Mabrouk M; He G; Wu XH; Schiffrin EL
    Circ Res; 1999 Mar; 84(5):505-15. PubMed ID: 10082472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of extracellular matrix elements on angiotensin II-induced calcium release in vascular smooth muscle cells from normotensive and hypertensive rats.
    Bouillier H; Samain E; Rücker-Martin C; Renaud JF; Safar M; Dagher G
    Hypertension; 2001 Jun; 37(6):1465-72. PubMed ID: 11408396
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteoglycans production by aortic vascular smooth muscle cells from hypertensive rats.
    Risler N; Castro C; Cruzado M; González S; Miatello R
    Biocell; 2003 Aug; 27(2):189-96. PubMed ID: 14510237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spontaneous white matter damage, cognitive decline and neuroinflammation in middle-aged hypertensive rats: an animal model of early-stage cerebral small vessel disease.
    Kaiser D; Weise G; Möller K; Scheibe J; Pösel C; Baasch S; Gawlitza M; Lobsien D; Diederich K; Minnerup J; Kranz A; Boltze J; Wagner DC
    Acta Neuropathol Commun; 2014 Dec; 2():169. PubMed ID: 25519173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suppression of endoplasmic reticulum stress improves endothelium-dependent contractile responses in aorta of the spontaneously hypertensive rat.
    Spitler KM; Matsumoto T; Webb RC
    Am J Physiol Heart Circ Physiol; 2013 Aug; 305(3):H344-53. PubMed ID: 23709602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of losartan on cerebral arteries in stroke-prone spontaneously hypertensive rats.
    Vacher E; Richer C; Giudicelli JF
    J Hypertens; 1996 Nov; 14(11):1341-8. PubMed ID: 8934363
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Effects of Ramipril on the expression of connexin 43 in cerebral arteries of spontaneously hypertensive rats].
    Tian T; Tan CY; Jia QH; Cong WW; Tian JJ; Ma KT; Li L; Si JQ
    Sheng Li Xue Bao; 2019 Jun; 71(3):395-404. PubMed ID: 31218330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arterial smooth muscle cell phenotype in stroke-prone spontaneously hypertensive rats.
    Contard F; Sabri A; Glukhova M; Sartore S; Marotte F; Pomies JP; Schiavi P; Guez D; Samuel JL; Rappaport L
    Hypertension; 1993 Nov; 22(5):665-76. PubMed ID: 8225526
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased inward rectifier K
    Kim HJ; Yin MZ; Cho S; Kim SE; Choi SW; Ye SK; Yoo HY; Kim SJ
    Clin Exp Pharmacol Physiol; 2020 Jan; 47(1):38-48. PubMed ID: 31444788
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Altered insulin-like growth factor-1 and nitric oxide sensitivities in hypertension contribute to vascular hyperplasia.
    Nolan BP; Senechal P; Waqar S; Myers J; Standley CA; Standley PR
    Am J Hypertens; 2003 May; 16(5 Pt 1):393-400. PubMed ID: 12745202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.