These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
696 related articles for article (PubMed ID: 32827603)
1. Mineral nutrient homeostasis, photosynthetic performance, and modulations of antioxidative defense components in two contrasting genotypes of Arachis hypogaea L. (peanut) for mitigation of nitrogen and/or phosphorus starvation. Patel M; Rangani J; Kumari A; Parida AK J Biotechnol; 2020 Nov; 323():136-158. PubMed ID: 32827603 [TBL] [Abstract][Full Text] [Related]
2. Silicon-induced mitigation of drought stress in peanut genotypes (Arachis hypogaea L.) through ion homeostasis, modulations of antioxidative defense system, and metabolic regulations. Patel M; Fatnani D; Parida AK Plant Physiol Biochem; 2021 Sep; 166():290-313. PubMed ID: 34146784 [TBL] [Abstract][Full Text] [Related]
3. Potassium deficiency stress tolerance in peanut (Arachis hypogaea) through ion homeostasis, activation of antioxidant defense, and metabolic dynamics: Alleviatory role of silicon supplementation. Patel M; Fatnani D; Parida AK Plant Physiol Biochem; 2022 Jul; 182():55-75. PubMed ID: 35468526 [TBL] [Abstract][Full Text] [Related]
4. Regulation of ROS through proficient modulations of antioxidative defense system maintains the structural and functional integrity of photosynthetic apparatus and confers drought tolerance in the facultative halophyte Salvadora persica L. Rangani J; Panda A; Patel M; Parida AK J Photochem Photobiol B; 2018 Dec; 189():214-233. PubMed ID: 30396132 [TBL] [Abstract][Full Text] [Related]
5. Assessing stomatal and non-stomatal limitations to carbon assimilation under progressive drought in peanut (Arachis hypogaea L.). Pilon C; Snider JL; Sobolev V; Chastain DR; Sorensen RB; Meeks CD; Massa AN; Walk T; Singh B; Earl HJ J Plant Physiol; 2018 Dec; 231():124-134. PubMed ID: 30261481 [TBL] [Abstract][Full Text] [Related]
6. Peanut photosynthesis response to drought can include diffusive and biochemical limitations depending on cultivar. Soba D; Parker S; Chen C; Shekoofa A; Sanz-Saez A Physiol Plant; 2024; 176(4):e14489. PubMed ID: 39165150 [TBL] [Abstract][Full Text] [Related]
7. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Sharma DK; Andersen SB; Ottosen CO; Rosenqvist E Physiol Plant; 2015 Feb; 153(2):284-98. PubMed ID: 24962705 [TBL] [Abstract][Full Text] [Related]
8. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. Singh SK; Badgujar G; Reddy VR; Fleisher DH; Bunce JA J Plant Physiol; 2013 Jun; 170(9):801-13. PubMed ID: 23384758 [TBL] [Abstract][Full Text] [Related]
9. Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical concentration. Singh SK; Reddy VR J Photochem Photobiol B; 2015 Oct; 151():276-84. PubMed ID: 26343044 [TBL] [Abstract][Full Text] [Related]
10. Stomatal and non-stomatal limitations are responsible in down-regulation of photosynthesis in melon plants grown under the saline condition: Application of carbon isotope discrimination as a reliable proxy. Sarabi B; Fresneau C; Ghaderi N; Bolandnazar S; Streb P; Badeck FW; Citerne S; Tangama M; David A; Ghashghaie J Plant Physiol Biochem; 2019 Aug; 141():1-19. PubMed ID: 31125807 [TBL] [Abstract][Full Text] [Related]
11. [Effects of nitrogen fertilizer reduction management on photosynthesis and chlorophyll fluorescence characteristics of sweetpotato]. Du XB; Wang JB; Liu XP; Xia JP; Han Y Ying Yong Sheng Tai Xue Bao; 2019 Apr; 30(4):1253-1260. PubMed ID: 30994286 [TBL] [Abstract][Full Text] [Related]
12. Resilient and sustainable production of peanut (Arachis hypogaea) in phosphorus-limited environment by using exogenous gamma-aminobutyric acid to sustain photosynthesis. Sun Z; Bai C; Liu Y; Ma M; Zhang S; Liu H; Bai R; Han X; Yong JWH Ecotoxicol Environ Saf; 2023 Sep; 263():115388. PubMed ID: 37611478 [TBL] [Abstract][Full Text] [Related]
13. [Effects of light quality on photosynthetic pigment contents and photosynthetic characteristics of peanut seedling leaves]. Yan MM; Wang ML; Wang HB; Wang YF; Zhao CX Ying Yong Sheng Tai Xue Bao; 2014 Feb; 25(2):483-7. PubMed ID: 24830249 [TBL] [Abstract][Full Text] [Related]
14. Effect of elevated ozone and varying levels of soil nitrogen in two wheat (Triticum aestivum L.) cultivars: Growth, gas-exchange, antioxidant status, grain yield and quality. Pandey AK; Ghosh A; Agrawal M; Agrawal SB Ecotoxicol Environ Saf; 2018 Aug; 158():59-68. PubMed ID: 29656165 [TBL] [Abstract][Full Text] [Related]
15. Differential sensitivity of spinach and amaranthus to enhanced UV-B at varying soil nutrient levels: association with gas exchange, UV-B-absorbing compounds and membrane damage. Singh S; Agrawal M; Agrawal SB Photosynth Res; 2013 Jul; 115(2-3):123-38. PubMed ID: 23686471 [TBL] [Abstract][Full Text] [Related]
16. [Effects of different cultivation modes on the leaf photosynthetic characteristics and yield of summer-sowing peanut]. Yang FJ; Zhao CX; Yan MM; Wang YF; Wang ML Ying Yong Sheng Tai Xue Bao; 2013 Mar; 24(3):747-52. PubMed ID: 23755490 [TBL] [Abstract][Full Text] [Related]
17. Nighttime stomatal conductance differs with nutrient availability in two temperate floodplain tree species. Eller F; Jensen K; Reisdorff C Tree Physiol; 2017 Apr; 37(4):428-440. PubMed ID: 27974652 [TBL] [Abstract][Full Text] [Related]
18. Interactive effect of soil moisture content and phosphorus fertilizer form on chickpea growth, photosynthesis, and nutrient uptake. Chtouki M; Laaziz F; Naciri R; Garré S; Nguyen F; Oukarroum A Sci Rep; 2022 Apr; 12(1):6671. PubMed ID: 35461340 [TBL] [Abstract][Full Text] [Related]
19. Optimized nitrogen application ameliorates the photosynthetic performance and yield potential in peanuts as revealed by OJIP chlorophyll fluorescence kinetics. Guo P; Ren J; Shi X; Xu A; Zhang P; Guo F; Feng Y; Zhao X; Yu H; Jiang C BMC Plant Biol; 2024 Aug; 24(1):774. PubMed ID: 39143533 [TBL] [Abstract][Full Text] [Related]
20. [Response of photosynthetic characteristics of peanut seedlings leaves to low light]. Zhang K; Wan YS; Liu FZ; Zhang EQ; Wang S Ying Yong Sheng Tai Xue Bao; 2009 Dec; 20(12):2989-95. PubMed ID: 20353067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]