BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32827785)

  • 1. Biomechanical characterization of a chronic type a dissected human aorta.
    Amabili M; Arena GO; Balasubramanian P; Breslavsky ID; Cartier R; Ferrari G; Holzapfel GA; Kassab A; Mongrain R
    J Biomech; 2020 Sep; 110():109978. PubMed ID: 32827785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic characterization of human descending thoracic aortas under cyclic load.
    Franchini G; Breslavsky ID; Holzapfel GA; Amabili M
    Acta Biomater; 2021 Aug; 130():291-307. PubMed ID: 34082105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layer-specific hyperelastic and viscoelastic characterization of human descending thoracic aortas.
    Amabili M; Balasubramanian P; Bozzo I; Breslavsky ID; Ferrari G
    J Mech Behav Biomed Mater; 2019 Nov; 99():27-46. PubMed ID: 31330442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructural and mechanical characterization of the layers of human descending thoracic aortas.
    Amabili M; Asgari M; Breslavsky ID; Franchini G; Giovanniello F; Holzapfel GA
    Acta Biomater; 2021 Oct; 134():401-421. PubMed ID: 34303867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is location a significant parameter in the layer dependent dissection properties of the aorta?
    Ríos-Ruiz I; Martínez MÁ; Peña E
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1887-1901. PubMed ID: 36057051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of regional/layer differences in failure properties and thickness as important biomechanical factors responsible for the initiation of aortic dissections.
    Manopoulos C; Karathanasis I; Kouerinis I; Angouras DC; Lazaris A; Tsangaris S; Sokolis DP
    J Biomech; 2018 Oct; 80():102-110. PubMed ID: 30195853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical characterization and constitutive modeling of the layer-dissected residual strains and mechanical properties of abdominal porcine aorta.
    Peña JA; Cilla M; Martínez MA; Peña E
    J Biomech; 2022 Feb; 132():110909. PubMed ID: 35032837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The layer-specific biomechanical properties of dissecting ascending aortic aneurysm (Stanford type A of dissection).
    Kozuń M; Kaczorowski M; Hałoń A
    Acta Bioeng Biomech; 2022; 24(2):3-14. PubMed ID: 38314497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of aneurysm on the directional, regional, and layer distribution of residual strains in ascending thoracic aorta.
    Sokolis DP
    J Mech Behav Biomed Mater; 2015 Jun; 46():229-43. PubMed ID: 25828156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical strength of aneurysmatic and dissected human thoracic aortas at different shear loading modes.
    Sommer G; Sherifova S; Oberwalder PJ; Dapunt OE; Ursomanno PA; DeAnda A; Griffith BE; Holzapfel GA
    J Biomech; 2016 Aug; 49(12):2374-82. PubMed ID: 26970889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of dissection on the mechanical properties of human ascending aorta and human ascending aorta aneurysm.
    Kozuń M; Płonek T; Jasiński M; Filipiak J
    Acta Bioeng Biomech; 2019; 21(2):127-134. PubMed ID: 31741471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of aneurysm on the mechanical dissection properties of the human ascending thoracic aorta.
    Pasta S; Phillippi JA; Gleason TG; Vorp DA
    J Thorac Cardiovasc Surg; 2012 Feb; 143(2):460-7. PubMed ID: 21868041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of impaired vasa vasorum flow on the structure and mechanics of the thoracic aorta: implications for the pathogenesis of aortic dissection.
    Angouras D; Sokolis DP; Dosios T; Kostomitsopoulos N; Boudoulas H; Skalkeas G; Karayannacos PE
    Eur J Cardiothorac Surg; 2000 Apr; 17(4):468-73. PubMed ID: 10773572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional distribution of layer-specific circumferential residual deformations and opening angles in the porcine aorta.
    Sokolis DP
    J Biomech; 2019 Nov; 96():109335. PubMed ID: 31540821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of layer heterogeneity on the biomechanical properties of ascending thoracic aortic aneurysms.
    Sokolis DP; Kritharis EP; Iliopoulos DC
    Med Biol Eng Comput; 2012 Dec; 50(12):1227-37. PubMed ID: 22926448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional delamination strength in the human aorta underlies the anatomical localization of the dissection channel.
    Sokolis DP; Papadodima SA
    J Biomech; 2022 Aug; 141():111174. PubMed ID: 35701262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ascending aortic elongation and the risk of dissection.
    Krüger T; Forkavets O; Veseli K; Lausberg H; Vöhringer L; Schneider W; Bamberg F; Schlensak C
    Eur J Cardiothorac Surg; 2016 Aug; 50(2):241-7. PubMed ID: 26984982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical outcomes and rates of aortic growth and reoperation after 1-stage repair of extensive chronic thoracic aortic dissection.
    Kouchoukos NT; Kulik A; Castner CF
    J Thorac Cardiovasc Surg; 2018 May; 155(5):1926-1935. PubMed ID: 29477254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-end intimal flap suturing method for establishing Stanford B type aortic dissection in a canine model.
    Cui JS; Zhuang SJ; Zhang J; Mei ZJ; Jing ZP; Liao MF
    Eur J Vasc Endovasc Surg; 2009 Nov; 38(5):603-7. PubMed ID: 19660967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adventitial CXCL1/G-CSF expression in response to acute aortic dissection triggers local neutrophil recruitment and activation leading to aortic rupture.
    Anzai A; Shimoda M; Endo J; Kohno T; Katsumata Y; Matsuhashi T; Yamamoto T; Ito K; Yan X; Shirakawa K; Shimizu-Hirota R; Yamada Y; Ueha S; Shinmura K; Okada Y; Fukuda K; Sano M
    Circ Res; 2015 Feb; 116(4):612-23. PubMed ID: 25563839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.