These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32827799)

  • 1. Construction and performance evaluation of Hep/silk-PLCL composite nanofiber small-caliber artificial blood vessel graft.
    Kuang H; Wang Y; Shi Y; Yao W; He X; Liu X; Mo X; Lu S; Zhang P
    Biomaterials; 2020 Nov; 259():120288. PubMed ID: 32827799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-ε-caprolactone)/silk fibroin in vitro and in vivo.
    Jin D; Hu J; Xia D; Liu A; Kuang H; Du J; Mo X; Yin M
    Int J Nanomedicine; 2019; 14():4261-4276. PubMed ID: 31289441
    [No Abstract]   [Full Text] [Related]  

  • 3. Gelatin/heparin coated bio-inspired polyurethane composite fibers to construct small-caliber artificial blood vessel grafts.
    Xiang Z; Chen H; Xu B; Wang H; Zhang T; Guan X; Ma Z; Liang K; Shi Q
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):131849. PubMed ID: 38670202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heparin and Vascular Endothelial Growth Factor Loaded Poly(L-lactide-co-caprolactone) Nanofiber Covered Stent-Graft for Aneurysm Treatment.
    Wang J; An Q; Li D; Wu T; Chen W; Sun B; El-Hamshary H; Al-Deyab SS; Zhu W; Mo X
    J Biomed Nanotechnol; 2015 Nov; 11(11):1947-60. PubMed ID: 26554154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silk fibroin H-fibroin/poly(ε-caprolactone) core-shell nanofibers with enhanced mechanical property and long-term drug release.
    Wang Z; Song X; Cui Y; Cheng K; Tian X; Dong M; Liu L
    J Colloid Interface Sci; 2021 Jul; 593():142-151. PubMed ID: 33744525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coaxial electrospinning of P(LLA-CL)/heparin biodegradable polymer nanofibers: potential vascular graft for substitution of femoral artery.
    Zhai W; Qiu LJ; Mo XM; Wang S; Xu YF; Peng B; Liu M; Huang JH; Wang GC; Zheng JH
    J Biomed Mater Res B Appl Biomater; 2013 Jun; ():471-478. PubMed ID: 23744736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An atorvastatin calcium and poly(L-lactide-co-caprolactone) core-shell nanofiber-covered stent to treat aneurysms and promote reendothelialization.
    Chu J; Chen L; Mo Z; Bowlin GL; Minden-Birkenmaier BA; Morsi Y; Aldalbahi A; El-Newehy M; Wang W; Mo X
    Acta Biomater; 2020 Jul; 111():102-117. PubMed ID: 32442783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of small-diameter vascular scaffolds by heparin-bonded P(LLA-CL) composite nanofibers to improve graft patency.
    Wang S; Mo XM; Jiang BJ; Gao CJ; Wang HS; Zhuang YG; Qiu LJ
    Int J Nanomedicine; 2013; 8():2131-9. PubMed ID: 23776333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small-diameter vascular graft composing of core-shell structured micro-nanofibers loaded with heparin and VEGF for endothelialization and prevention of neointimal hyperplasia.
    Fahad MAA; Lee HY; Park S; Choi M; Shanto PC; Park M; Bae SH; Lee BT
    Biomaterials; 2024 Apr; 306():122507. PubMed ID: 38367300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ blood vessel regeneration using neuropeptide substance P-conjugated small-diameter vascular grafts.
    Shafiq M; Wang L; Zhi D; Zhang Q; Wang K; Wang L; Kim DH; Kong D; Kim SH
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1669-1683. PubMed ID: 30315717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun Bilayer Composite Vascular Graft with an Inner Layer Modified by Polyethylene Glycol and Haparin to Regenerate the Blood Vessel.
    Kuang H; Yang S; Wang Y; He Y; Ye K; Hu J; Shen W; Morsi Y; Lu S; Mo X
    J Biomed Nanotechnol; 2019 Jan; 15(1):77-84. PubMed ID: 30480516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo evaluation of a small-caliber coaxial electrospun vascular graft loaded with heparin and VEGF.
    Hu YT; Pan XD; Zheng J; Ma WG; Sun LZ
    Int J Surg; 2017 Aug; 44():244-249. PubMed ID: 28648794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Well-organized neointima of large-pore poly(L-lactic acid) vascular graft coated with poly(L-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(L-lactic acid) graft in a mouse aortic implantation model.
    Tara S; Kurobe H; Rocco KA; Maxfield MW; Best CA; Yi T; Naito Y; Breuer CK; Shinoka T
    Atherosclerosis; 2014 Dec; 237(2):684-91. PubMed ID: 25463106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering.
    Wu T; Zhang J; Wang Y; Li D; Sun B; El-Hamshary H; Yin M; Mo X
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():121-129. PubMed ID: 29025640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porcine carotid artery replacement with biodegradable electrospun poly-e-caprolactone vascular prosthesis.
    Mrówczyński W; Mugnai D; de Valence S; Tille JC; Khabiri E; Cikirikcioglu M; Möller M; Walpoth BH
    J Vasc Surg; 2014 Jan; 59(1):210-9. PubMed ID: 23707057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun poly(L-lactic acid-co-ɛ-caprolactone) fibers loaded with heparin and vascular endothelial growth factor to improve blood compatibility and endothelial progenitor cell proliferation.
    Chen X; Wang J; An Q; Li D; Liu P; Zhu W; Mo X
    Colloids Surf B Biointerfaces; 2015 Apr; 128():106-114. PubMed ID: 25731100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional anticoagulation magnetic artificial blood vessels constructed by heparin-PLCL core-shell nanofibers for rapid deployment of veno-venous bypass.
    Liu P; Yang L; Shi A; Qian Y; Liu X; Dong D; Zhang X; Lv Y; Xiang J
    Biomater Sci; 2022 Jun; 10(13):3559-3568. PubMed ID: 35621240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel reinforcement of corrugated nanofiber tissue-engineered vascular graft to prevent aneurysm formation for arteriovenous shunts in an ovine model.
    Matsushita H; Hayashi H; Nurminsky K; Dunn T; He Y; Pitaktong I; Koda Y; Xu S; Nguyen V; Inoue T; Rodgers D; Nelson K; Johnson J; Hibino N
    JVS Vasc Sci; 2022; 3():182-191. PubMed ID: 35495567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and characterization of heparin-grafted poly-L-lactic acid-chitosan core-shell nanofibers scaffold for vascular gasket.
    Wang T; Ji X; Jin L; Feng Z; Wu J; Zheng J; Wang H; Xu ZW; Guo L; He N
    ACS Appl Mater Interfaces; 2013 May; 5(9):3757-63. PubMed ID: 23586670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and performance evaluation of PLCL-hCOLIII small-diameter vascular grafts crosslinked with procyanidins.
    Wang H; Xiao Y; Fang Z; Zhang Y; Yang L; Zhao C; Meng Z; Liu Y; Li C; Han Q; Feng Z
    Int J Biol Macromol; 2023 Nov; 251():126293. PubMed ID: 37591423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.