These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32827892)

  • 21. Modeling the formation of secondary organic aerosol (SOA). 2. The predicted effects of relative humidity on aerosol formation in the alpha-pinene-, beta-pinene-, sabinene-, delta 3-carene-, and cyclohexene-ozone systems.
    Seinfeld JH; Erdakos GB; Asher WE; Pankow JF
    Environ Sci Technol; 2001 May; 35(9):1806-17. PubMed ID: 11355196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling Photosensitized Secondary Organic Aerosol Formation in Laboratory and Ambient Aerosols.
    Tsui WG; Rao Y; Dai HL; McNeill VF
    Environ Sci Technol; 2017 Jul; 51(13):7496-7501. PubMed ID: 28605184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aging of secondary organic aerosol from alpha-pinene ozonolysis: roles of hydroxyl and nitrate radicals.
    Qi L; Nakao S; Cocker DR
    J Air Waste Manag Assoc; 2012 Dec; 62(12):1359-69. PubMed ID: 23362755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Smog chamber study of the effects of NOx and NH
    Qi X; Zhu S; Zhu C; Hu J; Lou S; Xu L; Dong J; Cheng P
    Sci Total Environ; 2020 Jul; 727():138632. PubMed ID: 32315905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of relative humidity on SOA formation from aromatic hydrocarbons: Implications from the evolution of gas- and particle-phase species.
    Chen T; Chu B; Ma Q; Zhang P; Liu J; He H
    Sci Total Environ; 2021 Jun; 773():145015. PubMed ID: 33582345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uptake of Semivolatile Secondary Organic Aerosol Formed from α-Pinene into Nonvolatile Polyethylene Glycol Probe Particles.
    Ye P; Ding X; Ye Q; Robinson ES; Donahue NM
    J Phys Chem A; 2016 Mar; 120(9):1459-67. PubMed ID: 26689768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantification of Gas-Wall Partitioning in Teflon Environmental Chambers Using Rapid Bursts of Low-Volatility Oxidized Species Generated in Situ.
    Krechmer JE; Pagonis D; Ziemann PJ; Jimenez JL
    Environ Sci Technol; 2016 Jun; 50(11):5757-65. PubMed ID: 27138683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into secondary organic aerosol formation mechanisms from measured gas/particle partitioning of specific organic tracer compounds.
    Zhao Y; Kreisberg NM; Worton DR; Isaacman G; Weber RJ; Liu S; Day DA; Russell LM; Markovic MZ; VandenBoer TC; Murphy JG; Hering SV; Goldstein AH
    Environ Sci Technol; 2013 Apr; 47(8):3781-7. PubMed ID: 23448102
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hygroscopicity of particles generated from photooxidation of alpha-pinene under different oxidation conditions in the presence of sulfate seed aerosols.
    Chu B; Wang K; Takekawa H; Li J; Zhou W; Jiang J; Ma Q; He H; Hao J
    J Environ Sci (China); 2014 Jan; 26(1):129-39. PubMed ID: 24649698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement in Secondary Organic Aerosol Formation in the Presence of Preexisting Organic Particle.
    Ye J; Gordon CA; Chan AW
    Environ Sci Technol; 2016 Apr; 50(7):3572-9. PubMed ID: 26963686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Secondary Organic Aerosol Mass Yields from NO
    Day DA; Fry JL; Kang HG; Krechmer JE; Ayres BR; Keehan NI; Thompson SL; Hu W; Campuzano-Jost P; Schroder JC; Stark H; DeVault MP; Ziemann PJ; Zarzana KJ; Wild RJ; Dubè WP; Brown SS; Jimenez JL
    J Phys Chem A; 2022 Oct; 126(40):7309-7330. PubMed ID: 36170568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation and evolution of molecular products in α-pinene secondary organic aerosol.
    Zhang X; McVay RC; Huang DD; Dalleska NF; Aumont B; Flagan RC; Seinfeld JH
    Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14168-73. PubMed ID: 26578760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The SOA formation model combined with semiempirical quantum chemistry for predicting UV-Vis absorption of secondary organic aerosols.
    Zhong M; Jang M; Oliferenko A; Pillai GG; Katritzky AR
    Phys Chem Chem Phys; 2012 Jul; 14(25):9058-66. PubMed ID: 22627894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Particle-Phase Diffusion Modulates Partitioning of Semivolatile Organic Compounds to Aged Secondary Organic Aerosol.
    Zaveri RA; Shilling JE; Zelenyuk A; Zawadowicz MA; Suski K; China S; Bell DM; Veghte D; Laskin A
    Environ Sci Technol; 2020 Mar; 54(5):2595-2605. PubMed ID: 31994876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of NOx and RH on the secondary organic aerosol formation from toluene photooxidation.
    Liu S; Liu X; Wang Y; Zhang S; Wu C; Du W; Wang G
    J Environ Sci (China); 2022 Apr; 114():1-9. PubMed ID: 35459475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using Ionic Liquids To Study the Migration of Semivolatile Organic Vapors in Smog Chamber Experiments.
    Ye Q; Sullivan RC; Donahue NM
    J Phys Chem A; 2019 May; 123(17):3887-3892. PubMed ID: 30950612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multigeneration Production of Secondary Organic Aerosol from Toluene Photooxidation.
    Li Y; Zhao J; Wang Y; Seinfeld JH; Zhang R
    Environ Sci Technol; 2021 Jul; 55(13):8592-8603. PubMed ID: 34137267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Particle Size Distribution Dynamics Can Help Constrain the Phase State of Secondary Organic Aerosol.
    He Y; Akherati A; Nah T; Ng NL; Garofalo LA; Farmer DK; Shiraiwa M; Zaveri RA; Cappa CD; Pierce JR; Jathar SH
    Environ Sci Technol; 2021 Feb; 55(3):1466-1476. PubMed ID: 33417446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Yields and molecular composition of gas phase and secondary organic aerosol from the photooxidation of the volatile consumer product benzyl alcohol: formation of highly oxygenated and hydroxy nitroaromatic compounds.
    Jaoui M; Docherty KS; Lewandowski M; Kleindienst TE
    Atmos Chem Phys; 2023 Apr; 23(8):4637-4661. PubMed ID: 38361764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insight into the crucial reason causing the difference in secondary organic aerosol yields of monocyclic aromatic hydrocarbons with different methyl substituent numbers.
    Yu Z; Wei Z; Zhang Z; Li Z; Zhang P; Yang B; Shu J; Wang H; Yan Z
    Sci Total Environ; 2023 Nov; 898():166353. PubMed ID: 37597565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.