These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32827904)

  • 1. Practical limits to column performance in liquid chromatography - Optimal operations.
    Blumberg LM
    J Chromatogr A; 2020 Oct; 1629():461482. PubMed ID: 32827904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methodology of quantitative comparison of practically achievable kinetic performance of differently structured liquid chromatography columns.
    Blumberg LM
    J Chromatogr A; 2022 Jun; 1672():463039. PubMed ID: 35439710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basic Structure-Independent Equations of Kinetic Performance of Columns in Liquid Chromatography.
    Blumberg LM
    Anal Chem; 2021 Mar; 93(12):5309-5316. PubMed ID: 33734674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic performance factor - A measurable metric of separation-time-pressure tradeoff in liquid and gas chromatography.
    Blumberg LM; Desmet G
    J Chromatogr A; 2018 Sep; 1567():26-36. PubMed ID: 30055913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic performance factor - a proportional metric for comparing performance of differently structured liguid chromatography columns.
    Blumberg LM
    J Chromatogr A; 2020 Jul; 1623():461101. PubMed ID: 32418722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport diameters of liquid chromatography columns.
    Blumberg LM
    J Chromatogr A; 2023 Jan; 1687():463688. PubMed ID: 36473313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic evaluation of new generation of column packed with 1.3 μm core-shell particles.
    Fekete S; Guillarme D
    J Chromatogr A; 2013 Sep; 1308():104-13. PubMed ID: 23953620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the speed-resolution limits of supercritical fluid chromatography at ultra-high pressures.
    Pauw R; Shoykhet Choikhet K; Desmet G; Broeckhoven K
    J Chromatogr A; 2014 Dec; 1374():247-253. PubMed ID: 25481350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending the limits of operating pressure of narrow-bore column liquid chromatography instrumentation.
    Pauw RD; Degreef B; Ritchie H; Eeltink S; Desmet G; Broeckhoven K
    J Chromatogr A; 2014 Jun; 1347():56-62. PubMed ID: 24797393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the gradient kinetic performance of silica monolithic capillary columns with columns packed with 3 μm porous and 2.7 μm fused-core silica particles.
    Vaast A; Broeckhoven K; Dolman S; Desmet G; Eeltink S
    J Chromatogr A; 2012 Mar; 1228():270-5. PubMed ID: 21855077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of particle size gradients on the apparent efficiency of chromatographic columns.
    Codesido S; Rudaz S; Veuthey JL; Guillarme D; Desmet G; Fekete S
    J Chromatogr A; 2019 Oct; 1603():208-215. PubMed ID: 31266645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive kinetic optimisation of hydrophilic interaction chromatography × reversed phase liquid chromatography separations: Experimental verification and application to phenolic analysis.
    Muller M; Tredoux AGJ; de Villiers A
    J Chromatogr A; 2018 Oct; 1571():107-120. PubMed ID: 30100525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational fluid dynamics simulations yielding guidelines for the ideal internal structure of monolithic liquid chromatography columns.
    Gzil P; Baron GV; Desmet G
    J Chromatogr A; 2003 Apr; 991(2):169-88. PubMed ID: 12741597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of new types of stationary phases for fast liquid chromatographic applications.
    Fekete S; Fekete J; Ganzler K
    J Pharm Biomed Anal; 2009 Dec; 50(5):703-9. PubMed ID: 19560301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of peak capacity of microbore liquid chromatography columns using gradient kinetic plots.
    Hetzel T; Blaesing C; Jaeger M; Teutenberg T; Schmidt TC
    J Chromatogr A; 2017 Feb; 1485():62-69. PubMed ID: 28093205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apparent efficiency of serially coupled columns in gradient elution liquid chromatography: Extension to the combination of any column formats.
    Codesido S; Rudaz S; Guillarme D; Horváth K; Fekete S
    J Chromatogr A; 2019 Mar; 1588():159-162. PubMed ID: 30587345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The limits of the separation power of unidimensional column liquid chromatography.
    Guiochon G
    J Chromatogr A; 2006 Sep; 1126(1-2):6-49. PubMed ID: 16908026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of parallel segmented flow chromatography on the height equivalent to a theoretical plate. I-performance of 4.6mm×30mm columns packed with 3.0μm Hypurity-C18 fully porous particles.
    Gritti F; Guiochon G
    J Chromatogr A; 2013 Jul; 1297():64-76. PubMed ID: 23706347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High efficiency liquid chromatography on conventional columns and instrumentation by using temperature as a variable. Kinetic plots and experimental verification.
    Lestremau F; de Villiers A; Lynen F; Cooper A; Szucs R; Sandra P
    J Chromatogr A; 2007 Jan; 1138(1-2):120-31. PubMed ID: 17097097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method transfer for fast liquid chromatography in pharmaceutical analysis: application to short columns packed with small particle. Part I: isocratic separation.
    Guillarme D; Nguyen DT; Rudaz S; Veuthey JL
    Eur J Pharm Biopharm; 2007 Jun; 66(3):475-82. PubMed ID: 17267188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.