These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 32827966)
1. Integration of proteomics, lipidomics, and metabolomics reveals novel metabolic mechanisms underlying N, N-dimethylformamide induced hepatotoxicity. Xu L; Zhao Q; Luo J; Ma W; Jin Y; Li C; Hou Y; Feng M; Wang Y; Chen J; Zhao J; Zheng Y; Yu D Ecotoxicol Environ Saf; 2020 Dec; 205():111166. PubMed ID: 32827966 [TBL] [Abstract][Full Text] [Related]
2. Hsa_circ_0005915 promotes N,N-dimethylformamide-induced oxidative stress in HL-7702 cells through NRF2/ARE axis. Liu Z; He Q; Liu Y; Zhang Y; Cui M; Peng H; Wang Y; Chen S; Li D; Chen L; Xiao Y; Chen W; Wang Q Toxicology; 2021 Jun; 458():152838. PubMed ID: 34153373 [TBL] [Abstract][Full Text] [Related]
3. Retinoid X receptor α (RXRα)-mediated erythroid-2-related factor-2 (NRF2) inactivation contributes to N,N-dimethylformamide (DMF)-induced oxidative stress in HL-7702 and HuH6 cells. Jiang H; Li R; Zhang Z; Chang C; Liu Y; Liu Z; He Q; Wang Q J Appl Toxicol; 2020 Apr; 40(4):470-482. PubMed ID: 31875996 [TBL] [Abstract][Full Text] [Related]
4. The essential role of CYP2E1 in metabolism and hepatotoxicity of N,N-dimethylformamide using a novel Cyp2e1 knockout mouse model and a population study. Wu Z; Liu Q; Wang L; Zheng M; Guan M; Zhang M; Zhao W; Wang C; Lu S; Cheng J; Leng S Arch Toxicol; 2019 Nov; 93(11):3169-3181. PubMed ID: 31501917 [TBL] [Abstract][Full Text] [Related]
5. Study on the potential way of hepatic cytotoxicity of N,N-dimethylformamide. Li S; Wang C J Biochem Mol Toxicol; 2018 Sep; 32(9):e22190. PubMed ID: 29984871 [TBL] [Abstract][Full Text] [Related]
6. Magnesium Isoglycyrrhizinate Reduces Hepatic Lipotoxicity through Regulating Metabolic Abnormalities. Lu L; Hao K; Hong Y; Liu J; Zhu J; Jiang W; Zhu Z; Wang G; Peng Y Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070938 [TBL] [Abstract][Full Text] [Related]
7. The deleterious effects of N,N-dimethylformamide on liver: A mini-review. Li MJ; Zeng T Chem Biol Interact; 2019 Jan; 298():129-136. PubMed ID: 30576622 [TBL] [Abstract][Full Text] [Related]
8. Integrative cross-omics analysis in primary mouse hepatocytes unravels mechanisms of cyclosporin A-induced hepatotoxicity. Van den Hof WF; Van Summeren A; Lommen A; Coonen ML; Brauers K; van Herwijnen M; Wodzig WK; Kleinjans JC Toxicology; 2014 Oct; 324():18-26. PubMed ID: 25047351 [TBL] [Abstract][Full Text] [Related]
9. Transcriptomic, proteomic and metabolomic profiling unravel the mechanisms of hepatotoxicity pathway induced by triphenyl phosphate (TPP). Wang X; Li F; Liu J; Ji C; Wu H Ecotoxicol Environ Saf; 2020 Dec; 205():111126. PubMed ID: 32823070 [TBL] [Abstract][Full Text] [Related]
10. Aberrant expression of miRNA-192-5p contributes to N,N-dimethylformamide-induced hepatic apoptosis. Zhang Z; Zhu W; Liu Z; Liu Y; Chang C; Jiang H; Li R; Xiao Y; Chen W; Hu Q; Wang Q J Appl Toxicol; 2020 Dec; 40(12):1683-1693. PubMed ID: 32648274 [TBL] [Abstract][Full Text] [Related]
11. CHOP is a critical regulator of acetaminophen-induced hepatotoxicity. Uzi D; Barda L; Scaiewicz V; Mills M; Mueller T; Gonzalez-Rodriguez A; Valverde AM; Iwawaki T; Nahmias Y; Xavier R; Chung RT; Tirosh B; Shibolet O J Hepatol; 2013 Sep; 59(3):495-503. PubMed ID: 23665281 [TBL] [Abstract][Full Text] [Related]
12. Omics-based identification of the combined effects of idiosyncratic drugs and inflammatory cytokines on the development of drug-induced liver injury. Jiang J; Mathijs K; Timmermans L; Claessen SM; Hecka A; Weusten J; Peters R; van Delft JH; Kleinjans JCS; Jennen DGJ; de Kok TM Toxicol Appl Pharmacol; 2017 Oct; 332():100-108. PubMed ID: 28733206 [TBL] [Abstract][Full Text] [Related]
13. Research on the hepatotoxicity mechanism of citrate-modified silver nanoparticles based on metabolomics and proteomics. Xie J; Dong W; Liu R; Wang Y; Li Y Nanotoxicology; 2018 Feb; 12(1):18-31. PubMed ID: 29251223 [TBL] [Abstract][Full Text] [Related]
14. Toxicant-Induced Metabolic Alterations in Lipid and Amino Acid Pathways Are Predictive of Acute Liver Toxicity in Rats. Pannala VR; Estes SK; Rahim M; Trenary I; O'Brien TP; Shiota C; Printz RL; Reifman J; Shiota M; Young JD; Wallqvist A Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33158035 [TBL] [Abstract][Full Text] [Related]
15. Integrated Metabolomics and Proteomics Approach To Identify Metabolic Abnormalities in Rats with Dioscorea bulbifera Rhizome-Induced Hepatotoxicity. Zhao DS; Jiang LL; Wang LL; Wu ZT; Li ZQ; Shi W; Li P; Jiang Y; Li HJ Chem Res Toxicol; 2018 Sep; 31(9):843-851. PubMed ID: 30052031 [TBL] [Abstract][Full Text] [Related]
16. Integration of Metabolomics and Lipidomics Reveals Metabolic Mechanisms of Triclosan-Induced Toxicity in Human Hepatocytes. Zhang H; Shao X; Zhao H; Li X; Wei J; Yang C; Cai Z Environ Sci Technol; 2019 May; 53(9):5406-5415. PubMed ID: 30964272 [TBL] [Abstract][Full Text] [Related]
17. Perfluorooctanoic acid exposure induces endoplasmic reticulum stress in the liver and its effects are ameliorated by 4-phenylbutyrate. Yan S; Zhang H; Wang J; Zheng F; Dai J Free Radic Biol Med; 2015 Oct; 87():300-11. PubMed ID: 26159507 [TBL] [Abstract][Full Text] [Related]
18. Synergistic hepatotoxicity of N,N-dimethylformamide with carbon tetrachloride in association with endoplasmic reticulum stress. Kim TH; Kim YW; Shin SM; Kim CW; Yu IJ; Kim SG Chem Biol Interact; 2010 Mar; 184(3):492-501. PubMed ID: 20097184 [TBL] [Abstract][Full Text] [Related]
19. Hepatotoxicity assessment of Rhizoma Paridis in adult zebrafish through proteomes and metabolome. Jia Z; Zhao C; Wang M; Zhao X; Zhang W; Han T; Xia Q; Han Z; Lin R; Li X Biomed Pharmacother; 2020 Jan; 121():109558. PubMed ID: 31766101 [TBL] [Abstract][Full Text] [Related]
20. The potential health risks of N,N-dimethylformamide: An updated review. Hong SJ; Zhang XN; Sun Z; Zeng T J Appl Toxicol; 2024 Nov; 44(11):1637-1646. PubMed ID: 38339870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]