These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32828092)

  • 1. Multi-fidelity machine-learning with uncertainty quantification and Bayesian optimization for materials design: Application to ternary random alloys.
    Tran A; Tranchida J; Wildey T; Thompson AP
    J Chem Phys; 2020 Aug; 153(7):074705. PubMed ID: 32828092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a Bayesian multi-fidelity scheme.
    Biehler J; Gee MW; Wall WA
    Biomech Model Mechanobiol; 2015 Jun; 14(3):489-513. PubMed ID: 25245816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Fidelity Surrogate-Based Process Mapping with Uncertainty Quantification in Laser Directed Energy Deposition.
    Menon N; Mondal S; Basak A
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian Uncertainty Quantification with Multi-Fidelity Data and Gaussian Processes for Impedance Cardiography of Aortic Dissection.
    Ranftl S; Melito GM; Badeli V; Reinbacher-Köstinger A; Ellermann K; von der Linden W
    Entropy (Basel); 2019 Dec; 22(1):. PubMed ID: 33285833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model inversion via multi-fidelity Bayesian optimization: a new paradigm for parameter estimation in haemodynamics, and beyond.
    Perdikaris P; Karniadakis GE
    J R Soc Interface; 2016 May; 13(118):. PubMed ID: 27194481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling.
    Perdikaris P; Raissi M; Damianou A; Lawrence ND; Karniadakis GE
    Proc Math Phys Eng Sci; 2017 Feb; 473(2198):20160751. PubMed ID: 28293137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propagation of uncertainty in the mechanical and biological response of growing tissues using multi-fidelity Gaussian process regression.
    Lee T; Bilionis I; Tepole AB
    Comput Methods Appl Mech Eng; 2020 Feb; 359():. PubMed ID: 32863456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncertainty-Quantified Hybrid Machine Learning/Density Functional Theory High Throughput Screening Method for Crystals.
    Noh J; Gu GH; Kim S; Jung Y
    J Chem Inf Model; 2020 Apr; 60(4):1996-2003. PubMed ID: 32208718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-fidelity modelling via recursive co-kriging and Gaussian-Markov random fields.
    Perdikaris P; Venturi D; Royset JO; Karniadakis GE
    Proc Math Phys Eng Sci; 2015 Jul; 471(2179):20150018. PubMed ID: 26345079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First principles theoretical investigations of low Young's modulus beta Ti-Nb and Ti-Nb-Zr alloys compositions for biomedical applications.
    Karre R; Niranjan MK; Dey SR
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():52-8. PubMed ID: 25746245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Petascale supercomputing to accelerate the design of high-temperature alloys.
    Shin D; Lee S; Shyam A; Haynes JA
    Sci Technol Adv Mater; 2017; 18(1):828-838. PubMed ID: 29379579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifidelity Information Fusion with Machine Learning: A Case Study of Dopant Formation Energies in Hafnia.
    Batra R; Pilania G; Uberuaga BP; Ramprasad R
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):24906-24918. PubMed ID: 30990303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian learning of chemisorption for bridging the complexity of electronic descriptors.
    Wang S; Pillai HS; Xin H
    Nat Commun; 2020 Nov; 11(1):6132. PubMed ID: 33257689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of low-modulus biomedical β Ti-Nb-Zr alloys based on single-crystal elastic constants modeling.
    Wang X; Zhang L; Guo Z; Jiang Y; Tao X; Liu L
    J Mech Behav Biomed Mater; 2016 Sep; 62():310-318. PubMed ID: 27235781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncertainty-aware mixed-variable machine learning for materials design.
    Zhang H; Chen WW; Iyer A; Apley DW; Chen W
    Sci Rep; 2022 Nov; 12(1):19760. PubMed ID: 36396678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining phonon accuracy with high transferability in Gaussian approximation potential models.
    George J; Hautier G; Bartók AP; Csányi G; Deringer VL
    J Chem Phys; 2020 Jul; 153(4):044104. PubMed ID: 32752705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainty Quantification and Sensitivity Analysis of Partial Charges on Macroscopic Solvent Properties in Molecular Dynamics Simulations with a Machine Learning Model.
    Peerless JS; Kwansa AL; Hawkins BS; Smith RC; Yingling YG
    J Chem Inf Model; 2021 Apr; 61(4):1745-1761. PubMed ID: 33729778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imprecise knowledge based design and development of titanium alloys for prosthetic applications.
    Datta S; Mahfouf M; Zhang Q; Chattopadhyay PP; Sultana N
    J Mech Behav Biomed Mater; 2016 Jan; 53():350-365. PubMed ID: 26398780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing autoinjector devices using physics-based simulations and Gaussian processes.
    Sree V; Zhong X; Bilionis I; Ardekani A; Tepole AB
    J Mech Behav Biomed Mater; 2023 Apr; 140():105695. PubMed ID: 36739826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.