BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32828098)

  • 1. Machine learning Frenkel Hamiltonian parameters to accelerate simulations of exciton dynamics.
    Farahvash A; Lee CK; Sun Q; Shi L; Willard AP
    J Chem Phys; 2020 Aug; 153(7):074111. PubMed ID: 32828098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing Efficiency of Nonadiabatic Molecular Dynamics by Hamiltonian Interpolation with Kernel Ridge Regression.
    Wu Y; Prezhdo N; Chu W
    J Phys Chem A; 2021 Oct; 125(41):9191-9200. PubMed ID: 34636570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral densities for Frenkel exciton dynamics in molecular crystals: A TD-DFTB approach.
    Plötz PA; Megow J; Niehaus T; Kühn O
    J Chem Phys; 2017 Feb; 146(8):084112. PubMed ID: 28249454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new efficient method for calculation of Frenkel exciton parameters in molecular aggregates.
    Plötz PA; Niehaus T; Kühn O
    J Chem Phys; 2014 May; 140(17):174101. PubMed ID: 24811619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representing the Molecular Signatures of Disordered Molecular Semiconductors in Size-Extendable Models of Exciton Dynamics.
    Lee CK; Willard AP
    J Phys Chem B; 2020 Jun; 124(25):5238-5245. PubMed ID: 32422051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the effects of molecular disorder on the properties of Frenkel excitons in organic molecular semiconductors.
    Shi L; Willard AP
    J Chem Phys; 2018 Sep; 149(9):094110. PubMed ID: 30195311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How Geometric Distortions Scatter Electronic Excitations in Conjugated Macromolecules.
    Shi T; Li H; Tretiak S; Chernyak VY
    J Phys Chem Lett; 2014 Nov; 5(22):3946-52. PubMed ID: 26276475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytic derivative couplings and first-principles exciton/phonon coupling constants for an ab initio Frenkel-Davydov exciton model: Theory, implementation, and application to compute triplet exciton mobility parameters for crystalline tetracene.
    Morrison AF; Herbert JM
    J Chem Phys; 2017 Jun; 146(22):224110. PubMed ID: 29166040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Diffusion Monte Carlo Energies.
    Ryczko K; Krogel JT; Tamblyn I
    J Chem Theory Comput; 2022 Dec; 18(12):7695-7701. PubMed ID: 36317712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the DNA Conductance Using a Deep Feedforward Neural Network Model.
    Aggarwal A; Vinayak V; Bag S; Bhattacharyya C; Waghmare UV; Maiti PK
    J Chem Inf Model; 2021 Jan; 61(1):106-114. PubMed ID: 33320660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-DFTB Approach to the Parametrization of the System-Bath Hamiltonian Describing Exciton-Vibrational Dynamics of Molecular Assemblies.
    Plötz PA; Megow J; Niehaus T; Kühn O
    J Chem Theory Comput; 2018 Oct; 14(10):5001-5010. PubMed ID: 30141929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A first principles approach to the electronic properties of liquid and supercritical CO2.
    Cabral BJ; Rivelino R; Coutinho K; Canuto S
    J Chem Phys; 2015 Jan; 142(2):024504. PubMed ID: 25591369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model hamiltonian tuned toward high level ab initio calculations to describe the character of excitonic states in perylenebisimide aggregates.
    Liu W; Canola S; Köhn A; Engels B; Negri F; Fink RF
    J Comput Chem; 2018 Sep; 39(24):1979-1989. PubMed ID: 30315587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning exciton dynamics.
    Häse F; Valleau S; Pyzer-Knapp E; Aspuru-Guzik A
    Chem Sci; 2016 Aug; 7(8):5139-5147. PubMed ID: 30155164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermolecular coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers.
    Madjet ME; Abdurahman A; Renger T
    J Phys Chem B; 2006 Aug; 110(34):17268-81. PubMed ID: 16928026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error.
    Faber FA; Hutchison L; Huang B; Gilmer J; Schoenholz SS; Dahl GE; Vinyals O; Kearnes S; Riley PF; von Lilienfeld OA
    J Chem Theory Comput; 2017 Nov; 13(11):5255-5264. PubMed ID: 28926232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians.
    Krämer M; Dohmen PM; Xie W; Holub D; Christensen AS; Elstner M
    J Chem Theory Comput; 2020 Jul; 16(7):4061-4070. PubMed ID: 32491856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical diversity in molecular orbital energy predictions with kernel ridge regression.
    Stuke A; Todorović M; Rupp M; Kunkel C; Ghosh K; Himanen L; Rinke P
    J Chem Phys; 2019 May; 150(20):204121. PubMed ID: 31153160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning Electron Densities in the Condensed Phase.
    Lewis AM; Grisafi A; Ceriotti M; Rossi M
    J Chem Theory Comput; 2021 Nov; 17(11):7203-7214. PubMed ID: 34669406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.