These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 32828101)
1. Accelerated kinetic Monte Carlo: A case study; vacancy and dumbbell interstitial diffusion traps in concentrated solid solution alloys. Ferasat K; Osetsky YN; Barashev AV; Zhang Y; Yao Z; Béland LK J Chem Phys; 2020 Aug; 153(7):074109. PubMed ID: 32828101 [TBL] [Abstract][Full Text] [Related]
2. Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α-Fe-Si alloys. Nandipati G; Jiang X; Vemuri RS; Mathaudhu S; Rohatgi A J Phys Condens Matter; 2018 Jan; 30(3):035903. PubMed ID: 29091585 [TBL] [Abstract][Full Text] [Related]
3. The diffusion of a Ga atom on GaAs(001)β2(2 × 4): Local superbasin kinetic Monte Carlo. Lin Y; Fichthorn KA J Chem Phys; 2017 Oct; 147(15):152711. PubMed ID: 29055293 [TBL] [Abstract][Full Text] [Related]
4. Data sets of migration barriers for atomistic Kinetic Monte Carlo simulations of Fe self-diffusion. Baibuz E; Vigonski S; Lahtinen J; Zhao J; Jansson V; Zadin V; Djurabekova F Data Brief; 2018 Aug; 19():564-569. PubMed ID: 29900356 [TBL] [Abstract][Full Text] [Related]
5. Anisotropic hydrogen diffusion in α-Zr and Zircaloy predicted by accelerated kinetic Monte Carlo simulations. Zhang Y; Jiang C; Bai X Sci Rep; 2017 Jan; 7():41033. PubMed ID: 28106154 [TBL] [Abstract][Full Text] [Related]
6. Acceleration scheme for particle transport in kinetic Monte Carlo methods. Kaiser W; Gößwein M; Gagliardi A J Chem Phys; 2020 May; 152(17):174106. PubMed ID: 32384840 [TBL] [Abstract][Full Text] [Related]
7. Data sets of migration barriers for atomistic Kinetic Monte Carlo simulations of Cu self-diffusion via first nearest neighbour atomic jumps. Baibuz E; Vigonski S; Lahtinen J; Zhao J; Jansson V; Zadin V; Djurabekova F Data Brief; 2018 Apr; 17():739-743. PubMed ID: 29876431 [TBL] [Abstract][Full Text] [Related]
8. Accurate acceleration of kinetic Monte Carlo simulations through the modification of rate constants. Chatterjee A; Voter AF J Chem Phys; 2010 May; 132(19):194101. PubMed ID: 20499945 [TBL] [Abstract][Full Text] [Related]
9. A local superbasin kinetic Monte Carlo method. Fichthorn KA; Lin Y J Chem Phys; 2013 Apr; 138(16):164104. PubMed ID: 23635108 [TBL] [Abstract][Full Text] [Related]
11. Trapping of interstitial defects: filling the gap between the experimental measurements and DFT calculations. Zhu L; Wang H; Hu QM; Ackland GJ; Yang R J Phys Condens Matter; 2013 Oct; 25(43):435402. PubMed ID: 24097075 [TBL] [Abstract][Full Text] [Related]
12. An off-lattice, self-learning kinetic Monte Carlo method using local environments. Konwar D; Bhute VJ; Chatterjee A J Chem Phys; 2011 Nov; 135(17):174103. PubMed ID: 22070288 [TBL] [Abstract][Full Text] [Related]
13. Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2 and Ni0.8Cr0.2. Zhao S; Stocks GM; Zhang Y Phys Chem Chem Phys; 2016 Sep; 18(34):24043-56. PubMed ID: 27523408 [TBL] [Abstract][Full Text] [Related]
14. A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides. Nie Y; Liang C; Cha PR; Colombo L; Wallace RM; Cho K Sci Rep; 2017 Jun; 7(1):2977. PubMed ID: 28592802 [TBL] [Abstract][Full Text] [Related]
15. Kinetic Monte Carlo study on the suppression of boron transient enhanced diffusion with carbon pre-implant. Park SY; Sung KS; Won T J Nanosci Nanotechnol; 2011 Jul; 11(7):6594-8. PubMed ID: 22121763 [TBL] [Abstract][Full Text] [Related]
16. Theoretical study of the ammonia nitridation rate on an Fe (100) surface: a combined density functional theory and kinetic Monte Carlo study. Yeo SC; Lo YC; Li J; Lee HM J Chem Phys; 2014 Oct; 141(13):134108. PubMed ID: 25296785 [TBL] [Abstract][Full Text] [Related]
17. Kinetic Monte Carlo (kMC) simulation of carbon co-implant on pre-amorphization process. Park S; Cho B; Yang S; Won T J Nanosci Nanotechnol; 2010 May; 10(5):3600-3. PubMed ID: 20359008 [TBL] [Abstract][Full Text] [Related]
18. A self-consistent mean field theory for diffusion in alloys. Nastar M; Barbe V Faraday Discuss; 2007; 134():331-42; discussion 399-419. PubMed ID: 17326576 [TBL] [Abstract][Full Text] [Related]
19. Atomistic Mechanisms of Binary Alloy Surface Segregation from Nanoseconds to Seconds Using Accelerated Dynamics. Garza RB; Lee J; Nguyen MH; Garmon A; Perez D; Li M; Yang JC; Henkelman G; Saidi WA J Chem Theory Comput; 2022 Jul; 18(7):4447-4455. PubMed ID: 35671511 [TBL] [Abstract][Full Text] [Related]
20. Interaction between interstitial carbon atoms and a ½ 〈1 1 1〉 self-interstitial atoms loop in an iron matrix: a combined DFT, off lattice KMC and MD study. Candela R; Mousseau N; Veiga RGA; Domain C; Becquart CS J Phys Condens Matter; 2018 Aug; 30(33):335901. PubMed ID: 29989564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]