These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32828104)

  • 1. Full-quantum descriptions of molecular systems from constrained nuclear-electronic orbital density functional theory.
    Xu X; Yang Y
    J Chem Phys; 2020 Aug; 153(7):074106. PubMed ID: 32828104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular vibrational frequencies from analytic Hessian of constrained nuclear-electronic orbital density functional theory.
    Xu X; Yang Y
    J Chem Phys; 2021 Jun; 154(24):244110. PubMed ID: 34241362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constrained nuclear-electronic orbital density functional theory: Energy surfaces with nuclear quantum effects.
    Xu X; Yang Y
    J Chem Phys; 2020 Feb; 152(8):084107. PubMed ID: 32113355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Dynamics with Nuclear-Electronic Orbital Density Functional Theory.
    Tao Z; Yu Q; Roy S; Hammes-Schiffer S
    Acc Chem Res; 2021 Nov; 54(22):4131-4141. PubMed ID: 34726895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical Gradients for Nuclear-Electronic Orbital Time-Dependent Density Functional Theory: Excited-State Geometry Optimizations and Adiabatic Excitation Energies.
    Tao Z; Roy S; Schneider PE; Pavošević F; Hammes-Schiffer S
    J Chem Theory Comput; 2021 Aug; 17(8):5110-5122. PubMed ID: 34260237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Describing proton transfer modes in shared proton systems with constrained nuclear-electronic orbital methods.
    Zhang Y; Xu X; Yang N; Chen Z; Yang Y
    J Chem Phys; 2023 Jun; 158(23):. PubMed ID: 37318164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicomponent Quantum Chemistry: Integrating Electronic and Nuclear Quantum Effects via the Nuclear-Electronic Orbital Method.
    Pavošević F; Culpitt T; Hammes-Schiffer S
    Chem Rev; 2020 May; 120(9):4222-4253. PubMed ID: 32283015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Dynamics with Constrained Nuclear Electronic Orbital Density Functional Theory: Accurate Vibrational Spectra from Efficient Incorporation of Nuclear Quantum Effects.
    Xu X; Chen Z; Yang Y
    J Am Chem Soc; 2022 Mar; 144(9):4039-4046. PubMed ID: 35196860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear-electronic orbital methods: Foundations and prospects.
    Hammes-Schiffer S
    J Chem Phys; 2021 Jul; 155(3):030901. PubMed ID: 34293877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multicomponent Density Functional Theory: Impact of Nuclear Quantum Effects on Proton Affinities and Geometries.
    Brorsen KR; Yang Y; Hammes-Schiffer S
    J Phys Chem Lett; 2017 Aug; 8(15):3488-3493. PubMed ID: 28686449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Vibrational Frequencies within the Nuclear-Electronic Orbital Framework.
    Yang Y; Schneider PE; Culpitt T; Pavošević F; Hammes-Schiffer S
    J Phys Chem Lett; 2019 Mar; 10(6):1167-1172. PubMed ID: 30776246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition states, reaction paths, and thermochemistry using the nuclear-electronic orbital analytic Hessian.
    Schneider PE; Tao Z; Pavošević F; Epifanovsky E; Feng X; Hammes-Schiffer S
    J Chem Phys; 2021 Feb; 154(5):054108. PubMed ID: 33557565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Vibrational Frequencies with Multiple Quantum Protons within the Nuclear-Electronic Orbital Framework.
    Culpitt T; Yang Y; Schneider PE; Pavošević F; Hammes-Schiffer S
    J Chem Theory Comput; 2019 Dec; 15(12):6840-6849. PubMed ID: 31618582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical gradients for nuclear-electronic orbital multistate density functional theory: Geometry optimizations and reaction paths.
    Yu Q; Schneider PE; Hammes-Schiffer S
    J Chem Phys; 2022 Mar; 156(11):114115. PubMed ID: 35317589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of nuclear basis sets for multicomponent quantum chemistry methods.
    Yu Q; Pavošević F; Hammes-Schiffer S
    J Chem Phys; 2020 Jun; 152(24):244123. PubMed ID: 32610964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional theory treatment of electron correlation in the nuclear-electronic orbital approach.
    Pak MV; Chakraborty A; Hammes-Schiffer S
    J Phys Chem A; 2007 May; 111(20):4522-6. PubMed ID: 17441701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of nuclear quantum effects on the molecular structure of bihalides and the hydrogen fluoride dimer.
    Swalina C; Hammes-Schiffer S
    J Phys Chem A; 2005 Nov; 109(45):10410-7. PubMed ID: 16833338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multicomponent density functional theory: Including the density gradient in the electron-proton correlation functional for hydrogen and deuterium.
    Tao Z; Yang Y; Hammes-Schiffer S
    J Chem Phys; 2019 Sep; 151(12):124102. PubMed ID: 31575164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating Nuclear Quantum Effects in Molecular Dynamics with a Constrained Minimized Energy Surface.
    Chen Z; Yang Y
    J Phys Chem Lett; 2023 Jan; 14(1):279-286. PubMed ID: 36595586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagonal Born-Oppenheimer Corrections within the Nuclear-Electronic Orbital Framework.
    Schneider PE; Pavošević F; Hammes-Schiffer S
    J Phys Chem Lett; 2019 Aug; 10(16):4639-4643. PubMed ID: 31347849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.