BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32828106)

  • 1. A GPU implementation of classical density functional theory for rapid prediction of gas adsorption in nanoporous materials.
    Zhou M; Wu J
    J Chem Phys; 2020 Aug; 153(7):074101. PubMed ID: 32828106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale Modeling of Physical Properties of Nanoporous Frameworks: Predicting Mechanical, Thermal, and Adsorption Behavior.
    Hardiagon A; Coudert FX
    Acc Chem Res; 2024 Jun; 57(11):1620-1632. PubMed ID: 38752454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic Route to Efficient Prediction of Gas Diffusivity in Nanoporous Materials.
    Tian Y; Xu X; Wu J
    Langmuir; 2017 Oct; 33(42):11797-11803. PubMed ID: 28915726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excess-entropy scaling for gas diffusivity in nanoporous materials.
    Liu Y; Fu J; Wu J
    Langmuir; 2013 Oct; 29(42):12997-3002. PubMed ID: 24070337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast screening of porous materials for noble gas adsorption and separation: a classical density functional approach.
    Guo F; Liu Y; Hu J; Liu H; Hu Y
    Phys Chem Chem Phys; 2018 Nov; 20(44):28193-28204. PubMed ID: 30395136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materials.
    Ren E; Coudert FX
    Chem Sci; 2023 Feb; 14(7):1797-1807. PubMed ID: 36819873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoporous chalcogenides for adsorption and gas separation.
    Ori G; Massobrio C; Pradel A; Ribes M; Coasne B
    Phys Chem Chem Phys; 2016 May; 18(19):13449-58. PubMed ID: 27126718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.
    Samant SS; Xia J; Muyan-Ozcelik P; Owens JD
    Med Phys; 2008 Aug; 35(8):3546-53. PubMed ID: 18777915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials.
    Witman M; Ling S; Jawahery S; Boyd PG; Haranczyk M; Slater B; Smit B
    J Am Chem Soc; 2017 Apr; 139(15):5547-5557. PubMed ID: 28357850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Gas Adsorption without the Knowledge of Pore Structures: A Machine Learning Method Based on Classical Density Functional Theory.
    Wu X; Liu Y
    J Phys Chem Lett; 2023 Nov; 14(45):10094-10102. PubMed ID: 37921618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Robust Machine Learning Algorithm for the Prediction of Methane Adsorption in Nanoporous Materials.
    Fanourgakis GS; Gkagkas K; Tylianakis E; Klontzas E; Froudakis G
    J Phys Chem A; 2019 Jul; 123(28):6080-6087. PubMed ID: 31264869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The osmotic framework adsorbed solution theory: predicting mixture coadsorption in flexible nanoporous materials.
    Coudert FX
    Phys Chem Chem Phys; 2010 Sep; 12(36):10904-13. PubMed ID: 20661493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscopic theory of hysteretic hydrogen adsorption in nanoporous materials.
    Kang J; Wei SH; Kim YH
    J Am Chem Soc; 2010 Feb; 132(5):1510-1. PubMed ID: 20088523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoporous metal oxides with tunable and nanocrystalline frameworks via conversion of metal-organic frameworks.
    Kim TK; Lee KJ; Cheon JY; Lee JH; Joo SH; Moon HR
    J Am Chem Soc; 2013 Jun; 135(24):8940-6. PubMed ID: 23651169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas adsorption properties of hybrid graphene-MOF materials.
    Szczęśniak B; Choma J; Jaroniec M
    J Colloid Interface Sci; 2018 Mar; 514():801-813. PubMed ID: 29187296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competitive adsorption of a binary CO2-CH4 mixture in nanoporous carbons: effects of edge-functionalization.
    Lu X; Jin D; Wei S; Zhang M; Zhu Q; Shi X; Deng Z; Guo W; Shen W
    Nanoscale; 2015 Jan; 7(3):1002-12. PubMed ID: 25470340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capture of formaldehyde by adsorption on nanoporous materials.
    Bellat JP; Bezverkhyy I; Weber G; Royer S; Averlant R; Giraudon JM; Lamonier JF
    J Hazard Mater; 2015 Dec; 300():711-717. PubMed ID: 26296074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing nanoporous materials for gas storage.
    Simon CM; Kim J; Lin LC; Martin RL; Haranczyk M; Smit B
    Phys Chem Chem Phys; 2014 Mar; 16(12):5499-513. PubMed ID: 24394864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.