These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 32828286)
1. Crystal structure of bacterial L-arabinose 1-dehydrogenase in complex with L-arabinose and NADP Yoshiwara K; Watanabe S; Watanabe Y Biochem Biophys Res Commun; 2020 Sep; 530(1):203-208. PubMed ID: 32828286 [TBL] [Abstract][Full Text] [Related]
2. Structural insights into the catalytic and substrate recognition mechanisms of bacterial l-arabinose 1-dehydrogenase. Watanabe Y; Iga C; Watanabe Y; Watanabe S FEBS Lett; 2019 Jun; 593(11):1257-1266. PubMed ID: 31058311 [TBL] [Abstract][Full Text] [Related]
3. L-Arabinose 1-dehydrogenase: a novel enzyme involving in bacterial L-arabinose metabolism. Watanabe S; Kodaki T; Makino K Nucleic Acids Symp Ser (Oxf); 2005; (49):309-10. PubMed ID: 17150757 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of l-rhamnose 1-dehydrogenase involved in the nonphosphorylative pathway of l-rhamnose metabolism in bacteria. Yoshiwara K; Watanabe S; Watanabe Y FEBS Lett; 2021 Mar; 595(5):637-646. PubMed ID: 33482017 [TBL] [Abstract][Full Text] [Related]
5. Cloning, expression, and characterization of bacterial L-arabinose 1-dehydrogenase involved in an alternative pathway of L-arabinose metabolism. Watanabe S; Kodaki T; Makino K J Biol Chem; 2006 Feb; 281(5):2612-23. PubMed ID: 16326697 [TBL] [Abstract][Full Text] [Related]
6. L-arabinose/D-galactose 1-dehydrogenase of Rhizobium leguminosarum bv. trifolii characterised and applied for bioconversion of L-arabinose to L-arabonate with Saccharomyces cerevisiae. Aro-Kärkkäinen N; Toivari M; Maaheimo H; Ylilauri M; Pentikäinen OT; Andberg M; Oja M; Penttilä M; Wiebe MG; Ruohonen L; Koivula A Appl Microbiol Biotechnol; 2014 Dec; 98(23):9653-65. PubMed ID: 25236800 [TBL] [Abstract][Full Text] [Related]
7. L-Arabinose degradation pathway in the haloarchaeon Haloferax volcanii involves a novel type of L-arabinose dehydrogenase. Johnsen U; Sutter JM; Zaiß H; Schönheit P Extremophiles; 2013 Nov; 17(6):897-909. PubMed ID: 23949136 [TBL] [Abstract][Full Text] [Related]
8. Characterization of L-arabinose/D-galactose 1-dehydrogenase from Thermotoga maritima and its application in galactonate production. Xue M; Feng S; Xie F; Zhao H; Xue Y World J Microbiol Biotechnol; 2022 Sep; 38(12):223. PubMed ID: 36109417 [TBL] [Abstract][Full Text] [Related]
9. A novel alpha-ketoglutaric semialdehyde dehydrogenase: evolutionary insight into an alternative pathway of bacterial L-arabinose metabolism. Watanabe S; Kodaki T; Makino K J Biol Chem; 2006 Sep; 281(39):28876-88. PubMed ID: 16835232 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of L-arabinose 1-dehydrogenase as a short-chain reductase/dehydrogenase protein. Watanabe S; Yoshiwara K; Matsubara R; Watanabe Y Biochem Biophys Res Commun; 2022 May; 604():14-21. PubMed ID: 35279441 [TBL] [Abstract][Full Text] [Related]
11. Converting NAD-specific inositol dehydrogenase to an efficient NADP-selective catalyst, with a surprising twist. Zheng H; Bertwistle D; Sanders DA; Palmer DR Biochemistry; 2013 Aug; 52(34):5876-83. PubMed ID: 23952058 [TBL] [Abstract][Full Text] [Related]
12. L-arabonate and D-galactonate production by expressing a versatile sugar dehydrogenase in metabolically engineered Escherichia coli. Liu H; Valdehuesa KN; Ramos KR; Nisola GM; Lee WK; Chung WJ Bioresour Technol; 2014 May; 159():455-9. PubMed ID: 24713235 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of NADP(H)-dependent 1,5-anhydro-D-fructose reductase from Sinorhizobium morelense at 2.2 A resolution: construction of a NADH-accepting mutant and its application in rare sugar synthesis. Dambe TR; Kühn AM; Brossette T; Giffhorn F; Scheidig AJ Biochemistry; 2006 Aug; 45(33):10030-42. PubMed ID: 16906761 [TBL] [Abstract][Full Text] [Related]
14. alpha-ketoglutaric semialdehyde dehydrogenase isozymes involved in metabolic pathways of D-glucarate, D-galactarate, and hydroxy-L-proline. Molecular and metabolic convergent evolution. Watanabe S; Yamada M; Ohtsu I; Makino K J Biol Chem; 2007 Mar; 282(9):6685-95. PubMed ID: 17202142 [TBL] [Abstract][Full Text] [Related]
15. Substrate-free structure of a monomeric NADP isocitrate dehydrogenase: an open conformation phylogenetic relationship of isocitrate dehydrogenase. Imabayashi F; Aich S; Prasad L; Delbaere LT Proteins; 2006 Apr; 63(1):100-12. PubMed ID: 16416443 [TBL] [Abstract][Full Text] [Related]
16. Crystal structures of NAD Tang W; Wu M; Qin N; Liu L; Meng R; Wang C; Wang P; Zang J; Zhu G Arch Biochem Biophys; 2021 Sep; 708():108898. PubMed ID: 33957092 [TBL] [Abstract][Full Text] [Related]
17. Structural characterization of a β-hydroxyacid dehydrogenase from Geobacter sulfurreducens and Geobacter metallireducens with succinic semialdehyde reductase activity. Zhang Y; Zheng Y; Qin L; Wang S; Buchko GW; Garavito RM Biochimie; 2014 Sep; 104():61-9. PubMed ID: 24878278 [TBL] [Abstract][Full Text] [Related]
18. Production and characterization of L-fucose dehydrogenase from newly isolated Acinetobacter sp. strain SA-134. Ohshiro T; Morita N Prep Biochem Biotechnol; 2014; 44(4):382-91. PubMed ID: 24320238 [TBL] [Abstract][Full Text] [Related]
19. Structure of the Bacillus anthracis dTDP-L-rhamnose-biosynthetic enzyme dTDP-4-dehydrorhamnose reductase (RfbD). Law A; Stergioulis A; Halavaty AS; Minasov G; Anderson WF; Kuhn ML Acta Crystallogr F Struct Biol Commun; 2017 Dec; 73(Pt 12):644-650. PubMed ID: 29199984 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of the monomeric isocitrate dehydrogenase in the presence of NADP+: insight into the cofactor recognition, catalysis, and evolution. Yasutake Y; Watanabe S; Yao M; Takada Y; Fukunaga N; Tanaka I J Biol Chem; 2003 Sep; 278(38):36897-904. PubMed ID: 12855708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]