BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 32828438)

  • 1. A novel method for predicting the progression rate of ALS disease based on automatic generation of probabilistic causal chains.
    Ahangaran M; Jahed-Motlagh MR; Minaei-Bidgoli B
    Artif Intell Med; 2020 Jul; 107():101879. PubMed ID: 32828438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Causal discovery from sequential data in ALS disease based on entropy criteria.
    Ahangaran M; Jahed-Motlagh MR; Minaei-Bidgoli B
    J Biomed Inform; 2019 Jan; 89():41-55. PubMed ID: 30339928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Dynamic Bayesian Network model for the simulation of Amyotrophic Lateral Sclerosis progression.
    Zandonà A; Vasta R; Chiò A; Di Camillo B
    BMC Bioinformatics; 2019 Apr; 20(Suppl 4):118. PubMed ID: 30999865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning dynamic Bayesian networks from time-dependent and time-independent data: Unraveling disease progression in Amyotrophic Lateral Sclerosis.
    Leão T; Madeira SC; Gromicho M; de Carvalho M; Carvalho AM
    J Biomed Inform; 2021 May; 117():103730. PubMed ID: 33737206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using an onset-anchored Bayesian hierarchical model to improve predictions for amyotrophic lateral sclerosis disease progression.
    Karanevich AG; Statland JM; Gajewski BJ; He J
    BMC Med Res Methodol; 2018 Feb; 18(1):19. PubMed ID: 29409450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An algorithm for direct causal learning of influences on patient outcomes.
    Rathnam C; Lee S; Jiang X
    Artif Intell Med; 2017 Jan; 75():1-15. PubMed ID: 28363452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DBN-Extended: A Dynamic Bayesian Network Model Extended With Temporal Abstractions for Coronary Heart Disease Prognosis.
    Orphanou K; Stassopoulou A; Keravnou E
    IEEE J Biomed Health Inform; 2016 May; 20(3):944-952. PubMed ID: 25861090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing Bayesian networks from a dependency-layered ontology: A proof-of-concept in radiation oncology.
    Kalet AM; Doctor JN; Gennari JH; Phillips MH
    Med Phys; 2017 Aug; 44(8):4350-4359. PubMed ID: 28500765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Causal discovery using a Bayesian local causal discovery algorithm.
    Mani S; Cooper GF
    Stud Health Technol Inform; 2004; 107(Pt 1):731-5. PubMed ID: 15360909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting functional impairment trajectories in amyotrophic lateral sclerosis: a probabilistic, multifactorial model of disease progression.
    Tavazzi E; Daberdaku S; Zandonà A; Vasta R; Nefussy B; Lunetta C; Mora G; Mandrioli J; Grisan E; Tarlarini C; Calvo A; Moglia C; Drory V; Gotkine M; Chiò A; Di Camillo B;
    J Neurol; 2022 Jul; 269(7):3858-3878. PubMed ID: 35266043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Causal inference in biology networks with integrated belief propagation.
    Chang R; Karr JR; Schadt EE
    Pac Symp Biocomput; 2015; ():359-70. PubMed ID: 25592596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating Amyotrophic Lateral Sclerosis and Motor Neuron Disease Prevalence in Portugal Using a Pharmaco-Epidemiological Approach and a Bayesian Multiparameter Evidence Synthesis Model.
    Conde B; Winck JC; Azevedo LF
    Neuroepidemiology; 2019; 53(1-2):73-83. PubMed ID: 31117082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classifying flow cytometry data using Bayesian analysis helps to distinguish ALS patients from healthy controls.
    Räuber S; Nelke C; Schroeter CB; Barman S; Pawlitzki M; Ingwersen J; Akgün K; Günther R; Garza AP; Marggraf M; Dunay IR; Schreiber S; Vielhaber S; Ziemssen T; Melzer N; Ruck T; Meuth SG; Herty M
    Front Immunol; 2023; 14():1198860. PubMed ID: 37600819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Causal discovery from medical textual data.
    Mani S; Cooper GF
    Proc AMIA Symp; 2000; ():542-6. PubMed ID: 11079942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of targeted metabolomics: dominance-based rough set approach versus orthogonal partial least square-discriminant analysis.
    Blasco H; Błaszczyński J; Billaut JC; Nadal-Desbarats L; Pradat PF; Devos D; Moreau C; Andres CR; Emond P; Corcia P; Słowiński R
    J Biomed Inform; 2015 Feb; 53():291-9. PubMed ID: 25499899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deconstructing progression of amyotrophic lateral sclerosis in stages: a Markov modeling approach.
    Thakore NJ; Lapin BR; Kinzy TG; Pioro EP
    Amyotroph Lateral Scler Frontotemporal Degener; 2018 Nov; 19(7-8):483-494. PubMed ID: 30001159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian network ensemble as a multivariate strategy to predict radiation pneumonitis risk.
    Lee S; Ybarra N; Jeyaseelan K; Faria S; Kopek N; Brisebois P; Bradley JD; Robinson C; Seuntjens J; El Naqa I
    Med Phys; 2015 May; 42(5):2421-30. PubMed ID: 25979036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statins, neuromuscular degenerative disease and an amyotrophic lateral sclerosis-like syndrome: an analysis of individual case safety reports from vigibase.
    Edwards IR; Star K; Kiuru A
    Drug Saf; 2007; 30(6):515-25. PubMed ID: 17536877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis for warning factors of type 2 diabetes mellitus complications with Markov blanket based on a Bayesian network model.
    Liu S; Zhang R; Shang X; Li W
    Comput Methods Programs Biomed; 2020 May; 188():105302. PubMed ID: 31923820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing a novel causal inference algorithm for personalized biomedical causal graph learning using meta machine learning.
    Wu H; Shi W; Wang MD
    BMC Med Inform Decis Mak; 2024 May; 24(1):137. PubMed ID: 38802809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.