These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 3282853)

  • 1. A simple and efficient procedure for generating random point mutations and for codon replacements using mixed oligodeoxynucleotides.
    Ner SS; Goodin DB; Smith M
    DNA; 1988 Mar; 7(2):127-34. PubMed ID: 3282853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for introducing random single point deletions in specific DNA target sequences using oligonucleotides.
    Ner SS; Atkinson TC; Smith M
    Nucleic Acids Res; 1989 Jun; 17(11):4015-23. PubMed ID: 2662137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple and efficient procedure for saturation mutagenesis using mixed oligodeoxynucleotides.
    Derbyshire KM; Salvo JJ; Grindley ND
    Gene; 1986; 46(2-3):145-52. PubMed ID: 3803923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [UNG-dependent correction of molecular heteroduplexes of M13 phage DNA in Escherichia coli cells].
    Golubovskaia VM; Aprelikova ON; Tomilin NV
    Mol Gen Mikrobiol Virusol; 1989 Jul; (7):24-9. PubMed ID: 2682222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple and highly efficient site-specific mutagenesis, by ligation of an oligodeoxyribonucleotide into gapped heteroduplex DNA in which the template strand contains deoxyuridine.
    Terwilliger TC
    Gene; 1988 Sep; 69(2):317-24. PubMed ID: 3069587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of lambda exonuclease for efficient oligonucleotide-mediated site-directed deletion and point mutation of double-stranded DNA.
    Palermo DP; Hess GF
    DNA; 1987 Jun; 6(3):273-9. PubMed ID: 2954801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted random mutagenesis: the use of ambiguously synthesized oligonucleotides to mutagenize sequences immediately 5' of an ATG initiation codon.
    Matteucci MD; Heyneker HL
    Nucleic Acids Res; 1983 May; 11(10):3113-21. PubMed ID: 6304623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effective method of oligonucleotide-controlled mutagenesis of DNA fragments].
    Efimov VA; Mirskikh OV; Chakhmakhcheva OG; Ovchinnikov IuA
    Bioorg Khim; 1985 May; 11(5):621-7. PubMed ID: 2994683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation spectra of M13 vectors containing site-specific Cis-Syn, Trans-Syn-I, (6-4), and Dewar pyrimidone photoproducts of thymidylyl-(3'-->5')-thymidine in Escherichia coli under SOS conditions.
    Smith CA; Wang M; Jiang N; Che L; Zhao X; Taylor JS
    Biochemistry; 1996 Apr; 35(13):4146-54. PubMed ID: 8672450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved oligonucleotide site-directed mutagenesis using M13 vectors.
    Carter P; Bedouelle H; Winter G
    Nucleic Acids Res; 1985 Jun; 13(12):4431-43. PubMed ID: 2989795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligonucleotide assembly in yeast to produce synthetic DNA fragments.
    Gibson DG
    Methods Mol Biol; 2012; 852():11-21. PubMed ID: 22328422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the codon bias in E. coli sequences.
    Blake RD; Hinds PW
    J Biomol Struct Dyn; 1984 Dec; 2(3):593-606. PubMed ID: 6401123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites.
    Wells JA; Vasser M; Powers DB
    Gene; 1985; 34(2-3):315-23. PubMed ID: 3891521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method for cloning single-stranded oligonucleotides in a plasmid vector.
    Mounts P; Wu TC; Peden K
    Biotechniques; 1989 Apr; 7(4):356-9. PubMed ID: 2698200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the codon following the initiation codon on the expression of the lacZ gene in Saccharomyces cerevisiae.
    Looman AC; Laude M; Stahl U
    Yeast; 1991 Feb; 7(2):157-65. PubMed ID: 1905858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the relationships between the synonymous codon usage and protein secondary structural units.
    Gupta SK; Majumdar S; Bhattacharya TK; Ghosh TC
    Biochem Biophys Res Commun; 2000 Mar; 269(3):692-6. PubMed ID: 10720478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Insight into relationship among mRNA coding region length, folding tendency and codon usage bias in Escherichia coli].
    Wang K; Liu CQ; Cao H; Chen XF
    Wei Sheng Wu Xue Bao; 2006 Dec; 46(6):895-9. PubMed ID: 17302150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limitations of codon adaptation index and other coding DNA-based features for prediction of protein expression in Saccharomyces cerevisiae.
    Friberg M; von Rohr P; Gonnet G
    Yeast; 2004 Oct; 21(13):1083-93. PubMed ID: 15484285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerated deamination of cytosine residues in UV-induced cyclobutane pyrimidine dimers leads to CC-->TT transitions.
    Peng W; Shaw BR
    Biochemistry; 1996 Aug; 35(31):10172-81. PubMed ID: 8756482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Characteristics of the context shift in the frequency of synonymic codons in Escherichia coli].
    BorodovskiÄ­ MIu; Shepelev VA; Aleksandrov AA
    Mol Biol (Mosk); 1988; 22(3):767-79. PubMed ID: 3054498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.