These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32828761)

  • 1. Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: A Sutterby fluid model.
    Akram J; Akbar NS; Tripathi D
    Microvasc Res; 2020 Nov; 132():104062. PubMed ID: 32828761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: A Sutterby fluid model.
    Akram J; Akbar NS; Tripathi D
    Microvasc Res; 2023 Jan; 145():104435. PubMed ID: 36115732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal, microrotation, electromagnetic field and nanoparticle shape effects on Cu-CuO/blood flow in microvascular vessels.
    Tripathi D; Prakash J; Tiwari AK; Ellahi R
    Microvasc Res; 2020 Nov; 132():104065. PubMed ID: 32858042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulation of heat transfer in blood flow altered by electroosmosis through tapered micro-vessels.
    Prakash J; Ramesh K; Tripathi D; Kumar R
    Microvasc Res; 2018 Jul; 118():162-172. PubMed ID: 29596861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat Transfer Attributes of Gold-Silver-Blood Hybrid Nanomaterial Flow in an EMHD Peristaltic Channel with Activation Energy.
    Souayeh B; Ramesh K; Hdhiri N; Yasin E; Alam MW; Alfares K; Yasin A
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joule heating and zeta potential effects on peristaltic blood flow through porous micro vessels altered by electrohydrodynamic.
    Ranjit NK; Shit GC; Tripathi D
    Microvasc Res; 2018 May; 117():74-89. PubMed ID: 29291432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer modelling of electro-osmotically augmented three-layered microvascular peristaltic blood flow.
    Tripathi D; Borode A; Jhorar R; Bég OA; Tiwari AK
    Microvasc Res; 2017 Nov; 114():65-83. PubMed ID: 28619665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational fluid dynamic simulation of two-fluid non-Newtonian nanohemodynamics through a diseased artery with a stenosis and aneurysm.
    Dubey A; Vasu B; Anwar Bég O; Gorla RSR; Kadir A
    Comput Methods Biomech Biomed Engin; 2020 Jun; 23(8):345-371. PubMed ID: 32098508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of variable magnetic field and partial slips on the dynamics of Sutterby nanofluid due to biaxially exponential and nonlinear stretchable sheets.
    Ishtiaq B; Nadeem S; Alzabut J
    Heliyon; 2023 Jul; 9(7):e17921. PubMed ID: 37455975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle aggregation and electro-osmotic propulsion in peristaltic transport of third-grade nanofluids through porous tube.
    Dolui S; Bhaumik B; De S; Changdar S
    Comput Biol Med; 2024 Jun; 176():108617. PubMed ID: 38772055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ascendancy of electromagnetic force and Hall currents on blood flow carrying Cu-Au NPs in a non-uniform endoscopic annulus having wall slip.
    Das S; Pal TK; Jana RN; Giri B
    Microvasc Res; 2021 Nov; 138():104191. PubMed ID: 34097918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological analysis of Jeffrey nanofluid in a curved channel with heat dissipation.
    Maraj EN; Akbar NS; Nadeem S
    IEEE Trans Nanobioscience; 2014 Dec; 13(4):431-7. PubMed ID: 25122841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peristaltic transport of Sutterby nanofluid flow in an inclined tapered channel with an artificial neural network model and biomedical engineering application.
    Chinnasamy P; Sivajothi R; Sathish S; Abbas M; Jeyakrishnan V; Goel R; Alqahtani MS; Loganathan K
    Sci Rep; 2024 Jan; 14(1):555. PubMed ID: 38177235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corrigendum to "Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: A Sutterby fluid model" [Microvasc. Res. 132 (2020) 104062].
    Akram J; Akbar NS; Tripathi D
    Microvasc Res; 2023 Jan; 145():104434. PubMed ID: 36114062
    [No Abstract]   [Full Text] [Related]  

  • 15. Numerical simulation of the transport of nanoparticles as drug carriers in hydromagnetic blood flow through a diseased artery with vessel wall permeability and rheological effects.
    Tripathi J; Vasu B; Bég OA; Mounika BR; Gorla RSR
    Microvasc Res; 2022 Jan; 139():104241. PubMed ID: 34508788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On Time-Dependent Rheology of Sutterby Nanofluid Transport across a Rotating Cone with Anisotropic Slip Constraints and Bioconvection.
    Abdal S; Siddique I; Abualnaja KM; Afzal S; Jaradat MMM; Mustafa Z; Ali HM
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stagnation point flow of radiative Oldroyd-B nanofluid over a rotating disk.
    Hafeez A; Khan M; Ahmed J
    Comput Methods Programs Biomed; 2020 Jul; 191():105342. PubMed ID: 32113101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entropy optimized flow of Sutterby nanomaterial subject to porous medium: Buongiorno nanofluid model.
    Li S; Khan MI; Alruqi AB; Khan SU; Abdullaev SS; Fadhl BM; Makhdoum BM
    Heliyon; 2023 Jul; 9(7):e17784. PubMed ID: 37449115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal analysis of radiative Sutterby nanofluid flow over stretching curved surface.
    Abbas N; Shatanawi W; Hasan F; Mustafa Z
    Heliyon; 2024 Jul; 10(13):e34056. PubMed ID: 39071661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient Two-Layer Electroosmotic Flow and Heat Transfer of Power-Law Nanofluids in a Microchannel.
    Deng S; Xiao T
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.