These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 32828795)
1. Unravelling the mechanism of action of "de novo" designed peptide P1 with model membranes and gram-positive and gram-negative bacteria. Espeche JC; Martínez M; Maturana P; Cutró A; Semorile L; Maffia PC; Hollmann A Arch Biochem Biophys; 2020 Oct; 693():108549. PubMed ID: 32828795 [TBL] [Abstract][Full Text] [Related]
2. Antimicrobial Peptides: Mechanisms of Action and Resistance. Bechinger B; Gorr SU J Dent Res; 2017 Mar; 96(3):254-260. PubMed ID: 27872334 [TBL] [Abstract][Full Text] [Related]
3. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components. Savini F; Loffredo MR; Troiano C; Bobone S; Malanovic N; Eichmann TO; Caprio L; Canale VC; Park Y; Mangoni ML; Stella L Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183291. PubMed ID: 32234322 [TBL] [Abstract][Full Text] [Related]
4. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Han HM; Gopal R; Park Y Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121 [TBL] [Abstract][Full Text] [Related]
5. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. Nuri R; Shprung T; Shai Y Biochim Biophys Acta; 2015 Nov; 1848(11 Pt B):3089-100. PubMed ID: 26051126 [TBL] [Abstract][Full Text] [Related]
6. Coevolution of Resistance Against Antimicrobial Peptides. Baindara P; Ghosh AK; Mandal SM Microb Drug Resist; 2020 Aug; 26(8):880-899. PubMed ID: 32119634 [TBL] [Abstract][Full Text] [Related]
7. Molecular insights into the interactions of GF-17 with the gram-negative and gram-positive bacterial lipid bilayers. Jahangiri S; Jafari M; Arjomand M; Mehrnejad F J Cell Biochem; 2018 Nov; 119(11):9205-9216. PubMed ID: 30076752 [TBL] [Abstract][Full Text] [Related]
8. Antimicrobial properties and interaction of two Trp-substituted cationic antimicrobial peptides with a lipid bilayer. Bi X; Wang C; Dong W; Zhu W; Shang D J Antibiot (Tokyo); 2014 May; 67(5):361-8. PubMed ID: 24496141 [TBL] [Abstract][Full Text] [Related]
9. Where Electrostatics Matter: Bacterial Surface Neutralization and Membrane Disruption by Antimicrobial Peptides SAAP-148 and OP-145. Vejzovic D; Piller P; Cordfunke RA; Drijfhout JW; Eisenberg T; Lohner K; Malanovic N Biomolecules; 2022 Sep; 12(9):. PubMed ID: 36139091 [TBL] [Abstract][Full Text] [Related]
10. A lack of synergy between membrane-permeabilizing cationic antimicrobial peptides and conventional antibiotics. He J; Starr CG; Wimley WC Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):8-15. PubMed ID: 25268681 [TBL] [Abstract][Full Text] [Related]
11. Interaction studies of novel cell selective antimicrobial peptides with model membranes and E. coli ATCC 11775. Joshi S; Bisht GS; Rawat DS; Kumar A; Kumar R; Maiti S; Pasha S Biochim Biophys Acta; 2010 Oct; 1798(10):1864-75. PubMed ID: 20599694 [TBL] [Abstract][Full Text] [Related]
12. Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. Glukhov E; Stark M; Burrows LL; Deber CM J Biol Chem; 2005 Oct; 280(40):33960-7. PubMed ID: 16043484 [TBL] [Abstract][Full Text] [Related]
13. In vitro activity of novel in silico-developed antimicrobial peptides against a panel of bacterial pathogens. Romani AA; Baroni MC; Taddei S; Ghidini F; Sansoni P; Cavirani S; Cabassi CS J Pept Sci; 2013 Sep; 19(9):554-65. PubMed ID: 23893489 [TBL] [Abstract][Full Text] [Related]
14. The effects of LPS on the activity of Trp-containing antimicrobial peptides against Gram-negative bacteria and endotoxin neutralization. Shang D; Zhang Q; Dong W; Liang H; Bi X Acta Biomater; 2016 Mar; 33():153-65. PubMed ID: 26804205 [TBL] [Abstract][Full Text] [Related]
15. Structure-activity relationships of de novo designed cyclic antimicrobial peptides based on gramicidin S. Lee DL; Hodges RS Biopolymers; 2003; 71(1):28-48. PubMed ID: 12712499 [TBL] [Abstract][Full Text] [Related]
16. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes. Schmitt P; Rosa RD; Destoumieux-Garzón D Biochim Biophys Acta; 2016 May; 1858(5):958-70. PubMed ID: 26498397 [TBL] [Abstract][Full Text] [Related]
17. Role of lipopolysaccharides and lipoteichoic acids on C-Chrysophsin-1 interactions with model Gram-positive and Gram-negative bacterial membranes. Alexander TE; Smith IM; Lipsky ZW; Lozeau LD; Camesano TA Biointerphases; 2020 May; 15(3):031007. PubMed ID: 32456440 [TBL] [Abstract][Full Text] [Related]
18. Similarities and differences for membranotropic action of three unnatural antimicrobial peptides. Oliva R; Chino M; Lombardi A; Nastri F; Notomista E; Petraccone L; Del Vecchio P J Pept Sci; 2020 Aug; 26(8):e3270. PubMed ID: 32558092 [TBL] [Abstract][Full Text] [Related]
19. Depolarization, bacterial membrane composition, and the antimicrobial action of ceragenins. Epand RF; Pollard JE; Wright JO; Savage PB; Epand RM Antimicrob Agents Chemother; 2010 Sep; 54(9):3708-13. PubMed ID: 20585129 [TBL] [Abstract][Full Text] [Related]
20. Design and synthesis of new N-terminal fatty acid modified-antimicrobial peptide analogues with potent in vitro biological activity. Zhong C; Liu T; Gou S; He Y; Zhu N; Zhu Y; Wang L; Liu H; Zhang Y; Yao J; Ni J Eur J Med Chem; 2019 Nov; 182():111636. PubMed ID: 31466017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]