BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32829115)

  • 1. Effect of pre-acetylation of hydroxyl functional groups by choline chloride/acetic anhydride on subsequent lignin pyrolysis.
    Li T; Yin Y; Wu S; Ma H; Zhang F
    Bioresour Technol; 2020 Dec; 317():124034. PubMed ID: 32829115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of deep eutectic solvents-regulated lignin structure on subsequent pyrolysis products selectivity.
    Li T; Yin Y; Wu S; Du X
    Bioresour Technol; 2022 Jan; 343():126120. PubMed ID: 34695590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of acetylation process of kraft lignin in development of environment-friendly semisolid lubricants.
    Trejo-Cáceres M; Sánchez MC; Martín-Alfonso JE
    Int J Biol Macromol; 2023 Feb; 227():673-684. PubMed ID: 36529226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vacuum Low-Temperature Microwave-Assisted Pyrolysis of Technical Lignins.
    Karthäuser J; Biziks V; Frauendorf H; Mai C; Militz H
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the interaction of phenolic hydroxyl with the benzene rings on lignin pyrolysis.
    Ma H; Li T; Wu S; Zhang X
    Bioresour Technol; 2020 Aug; 309():123351. PubMed ID: 32289658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Choline chloride-zinc chloride deep eutectic solvent mediated preparation of partial O-acetylation of chitin nanocrystal in one step reaction.
    Hong S; Yuan Y; Yang Q; Chen L; Deng J; Chen W; Lian H; Mota-Morales JD; Liimatainen H
    Carbohydr Polym; 2019 Sep; 220():211-218. PubMed ID: 31196542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unmasking radical-mediated lignin pyrolysis after benzyl hydroxyl shielding.
    Fan Y; Lei M; Zhang Z; Kong X; Xu W; Han Y; Li M; Liu C; Xiao R
    Bioresour Technol; 2021 Dec; 342():125944. PubMed ID: 34537528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow pyrolysis of prot, alkali and dealkaline lignins for production of chemicals.
    Biswas B; Singh R; Kumar J; Khan AA; Krishna BB; Bhaskar T
    Bioresour Technol; 2016 Aug; 213():319-326. PubMed ID: 26873286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave-assisted selective acetylation of Kraft lignin: Acetic acid as a sustainable reactant for lignin valorization.
    de Oliveira DR; Avelino F; Mazzetto SE; Lomonaco D
    Int J Biol Macromol; 2020 Dec; 164():1536-1544. PubMed ID: 32738321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of kraft lignin under hydrothermal conditions.
    Zhou XF
    Bioresour Technol; 2014 Oct; 170():583-586. PubMed ID: 25176169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formate-assisted analytical pyrolysis of kraft lignin to phenols.
    Wang W; Wang M; Huang J; Zhao X; Su Y; Wang Y; Li X
    Bioresour Technol; 2019 Apr; 278():464-467. PubMed ID: 30691955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radical footprinting and regularity revealing during the pyrolysis of technical lignins.
    Fan Y; Zhang Z; Wang Z; Yu H; Kong X; Li P; Li M; Xiao R; Liu C
    Bioresour Technol; 2022 Sep; 360():127648. PubMed ID: 35868468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study and optimization of parameters affecting the acetylation process of lignin sulfonate biopolymer.
    Shayesteh K; Mohammadzadeh G; Zamanloo M
    Int J Biol Macromol; 2020 Nov; 163():1810-1820. PubMed ID: 32896562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oleogels and reverse emulsions stabilized by acetylated Kraft lignins.
    Borrero-López AM; Wang L; Li H; Lourençon TV; Valencia C; Franco JM; Rojas OJ
    Int J Biol Macromol; 2023 Jul; 242(Pt 3):124941. PubMed ID: 37210063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective production of phenols from lignin via microwave pyrolysis using different carbonaceous susceptors.
    Yerrayya A; Suriapparao DV; Natarajan U; Vinu R
    Bioresour Technol; 2018 Dec; 270():519-528. PubMed ID: 30248651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and radical scavenging activity relationships of pyrolytic lignins.
    Nsimba RY; West N; Boateng AA
    J Agric Food Chem; 2012 Dec; 60(51):12525-30. PubMed ID: 23199120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation into the lignin decomposition mechanism by analysis of the pyrolysis product of Pinus radiata.
    Kim YM; Jae J; Myung S; Sung BH; Dong JI; Park YK
    Bioresour Technol; 2016 Nov; 219():371-377. PubMed ID: 27501034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the Degradation Performance of Seven Different Choline Chloride-Based DES Systems on Alkaline Lignin.
    Li P; Lu Y; Li X; Ren J; Jiang Z; Jiang B; Wu W
    Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.
    Li D; Briens C; Berruti F
    Bioresour Technol; 2015; 189():7-14. PubMed ID: 25863324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying acetylated lignin units in non-wood fibers using pyrolysis-gas chromatography/mass spectrometry.
    del Río JC; Gutiérrez A; Martínez AT
    Rapid Commun Mass Spectrom; 2004; 18(11):1181-5. PubMed ID: 15164346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.