These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 32829180)
1. Influence of environmental and biological macromolecules on aggregation kinetics of nanoplastics in aquatic systems. Liu Y; Huang Z; Zhou J; Tang J; Yang C; Chen C; Huang W; Dang Z Water Res; 2020 Nov; 186():116316. PubMed ID: 32829180 [TBL] [Abstract][Full Text] [Related]
2. Influence of protein configuration on aggregation kinetics of nanoplastics in aquatic environment. Huang Z; Chen C; Liu Y; Liu S; Zeng D; Yang C; Huang W; Dang Z Water Res; 2022 Jul; 219():118522. PubMed ID: 35550965 [TBL] [Abstract][Full Text] [Related]
3. Deposition behaviors of carboxyl-modified polystyrene nanoplastics with goethite in aquatic environment: Effects of solution chemistry and organic macromolecules. Xie R; Xing X; Nie X; Ma X; Wan Q; Chen Q; Li Z; Wang J Sci Total Environ; 2023 Dec; 904():166783. PubMed ID: 37666342 [TBL] [Abstract][Full Text] [Related]
4. Colloidal stability and aggregation behavior of CdS colloids in aquatic systems: Effects of macromolecules, cations, and pH. Liu B; Guo C; Ke C; Chen K; Dang Z Sci Total Environ; 2023 Apr; 869():161814. PubMed ID: 36708836 [TBL] [Abstract][Full Text] [Related]
5. Colloidal stability of nanosized activated carbon in aquatic systems: Effects of pH, electrolytes, and macromolecules. Shao Z; Luo S; Liang M; Ning Z; Sun W; Zhu Y; Mo J; Li Y; Huang W; Chen C Water Res; 2021 Sep; 203():117561. PubMed ID: 34450463 [TBL] [Abstract][Full Text] [Related]
6. Influence of macromolecules and electrolytes on heteroaggregation kinetics of polystyrene nanoplastics and goethite nanoparticles in aquatic environments. Zeng D; Chen C; Huang Z; Gu J; Zhang Z; Cai T; Peng J; Huang W; Dang Z; Yang C J Hazard Mater; 2024 Sep; 477():135257. PubMed ID: 39047557 [TBL] [Abstract][Full Text] [Related]
7. Influence of macromolecules on aggregation kinetics of diesel soot nanoparticles in aquatic environments. Chen C; Wei J; Li J; Duan Z; Huang W Environ Pollut; 2019 Sep; 252(Pt B):1892-1901. PubMed ID: 31227348 [TBL] [Abstract][Full Text] [Related]
8. Aggregation kinetics of UV irradiated nanoplastics in aquatic environments. Liu Y; Hu Y; Yang C; Chen C; Huang W; Dang Z Water Res; 2019 Oct; 163():114870. PubMed ID: 31336206 [TBL] [Abstract][Full Text] [Related]
9. Aggregation behavior of polystyrene nanoplastics: Role of surface functional groups and protein and electrolyte variation. Guo Y; Tang N; Lu L; Li N; Hu T; Guo J; Zhang J; Zeng Z; Liang J Chemosphere; 2024 Feb; 350():140998. PubMed ID: 38142881 [TBL] [Abstract][Full Text] [Related]
10. The crucial role of a protein corona in determining the aggregation kinetics and colloidal stability of polystyrene nanoplastics. Li X; He E; Jiang K; Peijnenburg WJGM; Qiu H Water Res; 2021 Feb; 190():116742. PubMed ID: 33348070 [TBL] [Abstract][Full Text] [Related]
11. Combined effects of photoaging and natural organic matter on the colloidal stability of nanoplastics in aquatic environments. Xu Y; Ou Q; Li X; Wang X; van der Hoek JP; Liu G Water Res; 2022 Nov; 226():119313. PubMed ID: 36369686 [TBL] [Abstract][Full Text] [Related]
12. Heteroaggregation kinetics of nanoplastics and soot nanoparticles in aquatic environments. Zeng D; Yang C; Huang Z; Liu Y; Liu S; Zhang Z; Huang W; Dang Z; Chen C J Hazard Mater; 2024 Jul; 472():134564. PubMed ID: 38743982 [TBL] [Abstract][Full Text] [Related]
13. Influence of extracellular polymeric substances on the aggregation kinetics of TiO Lin D; Drew Story S; Walker SL; Huang Q; Cai P Water Res; 2016 Nov; 104():381-388. PubMed ID: 27576157 [TBL] [Abstract][Full Text] [Related]
14. Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes. Yu S; Shen M; Li S; Fu Y; Zhang D; Liu H; Liu J Environ Pollut; 2019 Dec; 255(Pt 2):113302. PubMed ID: 31597113 [TBL] [Abstract][Full Text] [Related]
15. Cation-π mechanism promotes the adsorption of humic acid on polystyrene nanoplastics to differently affect their aggregation: Evidence from experimental characterization and DFT calculation. Kong Y; Li X; Tao M; Cao X; Wang Z; Xing B J Hazard Mater; 2023 Oct; 459():132071. PubMed ID: 37487331 [TBL] [Abstract][Full Text] [Related]
16. Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Saleh NB; Pfefferle LD; Elimelech M Environ Sci Technol; 2010 Apr; 44(7):2412-8. PubMed ID: 20184360 [TBL] [Abstract][Full Text] [Related]
17. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter. Li S; Liu H; Gao R; Abdurahman A; Dai J; Zeng F Environ Pollut; 2018 Jun; 237():126-132. PubMed ID: 29482018 [TBL] [Abstract][Full Text] [Related]
18. Impact of CeO Li X; He E; Xia B; Van Gestel CAM; Peijnenburg WJGM; Cao X; Qiu H Water Res; 2020 Nov; 186():116324. PubMed ID: 32871291 [TBL] [Abstract][Full Text] [Related]
19. Heteroaggregation, disaggregation, and migration of nanoplastics with nanosized activated carbon in aquatic environments: Effects of particle property, water chemistry, and hydrodynamic condition. Li L; Luo D; Luo S; Yue J; Li X; Chen L; Chen X; Wen B; Luo X; Li Y; Huang W; Chen C Water Res; 2024 Nov; 266():122399. PubMed ID: 39276480 [TBL] [Abstract][Full Text] [Related]
20. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. Chen KL; Elimelech M J Colloid Interface Sci; 2007 May; 309(1):126-34. PubMed ID: 17331529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]