These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32829236)

  • 1. Differences in the principal strain angles during activities performed on natural hilly terrain versus engineered surfaces.
    Milgrom C; Finestone AS; Voloshin A
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105146. PubMed ID: 32829236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the etiology of the posteromedial tibial stress fracture.
    Milgrom C; Burr DB; Finestone AS; Voloshin A
    Bone; 2015 Sep; 78():11-4. PubMed ID: 25933941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo measurement of human tibial strains during vigorous activity.
    Burr DB; Milgrom C; Fyhrie D; Forwood M; Nyska M; Finestone A; Hoshaw S; Saiag E; Simkin A
    Bone; 1996 May; 18(5):405-10. PubMed ID: 8739897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of strain in the macaque tibia during functional activity.
    Demes B; Qin YX; Stern JT; Larson SG; Rubin CT
    Am J Phys Anthropol; 2001 Dec; 116(4):257-65. PubMed ID: 11745077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of shoe gear on human tibial strains recorded during dynamic loading: a pilot study.
    Milgrom C; Burr D; Fyhrie D; Forwood M; Finestone A; Nyska M; Giladi M; Liebergall M; Simkin A
    Foot Ankle Int; 1996 Nov; 17(11):667-71. PubMed ID: 8946180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do high impact exercises produce higher tibial strains than running?
    Milgrom C; Finestone A; Levi Y; Simkin A; Ekenman I; Mendelson S; Millgram M; Nyska M; Benjuya N; Burr D
    Br J Sports Med; 2000 Jun; 34(3):195-9. PubMed ID: 10854019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A home exercise program for tibial bone strengthening based on in vivo strain measurements.
    Milgrom C; Miligram M; Simkin A; Burr D; Ekenman I; Finestone A
    Am J Phys Med Rehabil; 2001 Jun; 80(6):433-8. PubMed ID: 11399004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running.
    Yang PF; Sanno M; Ganse B; Koy T; Brüggemann GP; Müller LP; Rittweger J
    PLoS One; 2014; 9(4):e94525. PubMed ID: 24732724
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Milgrom C; Voloshin A; Novack L; Milgrom Y; Ekenman I; Finestone AS
    Bone Rep; 2022 Jun; 16():101170. PubMed ID: 35198657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidirectional basketball activities load different regions of the tibia: A subject-specific muscle-driven finite element study.
    Yan C; Bice RJ; Frame JW; Warden SJ; Kersh ME
    Bone; 2022 Jun; 159():116392. PubMed ID: 35314384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone strain in the equine tibia: an in vivo strain gauge analysis.
    Hartman W; Schamhardt HC; Lammertink JL; Badoux DM
    Am J Vet Res; 1984 May; 45(5):880-4. PubMed ID: 6732018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cross-sectional study of the effects of load carriage on running characteristics and tibial mechanical stress: implications for stress-fracture injuries in women.
    Xu C; Silder A; Zhang J; Reifman J; Unnikrishnan G
    BMC Musculoskelet Disord; 2017 Mar; 18(1):125. PubMed ID: 28330449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metatarsal strains are sufficient to cause fatigue fracture during cyclic overloading.
    Milgrom C; Finestone A; Sharkey N; Hamel A; Mandes V; Burr D; Arndt A; Ekenman I
    Foot Ankle Int; 2002 Mar; 23(3):230-5. PubMed ID: 11934065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of biomechanical shoe orthoses in tibial stress fracture prevention.
    Ekenman I; Milgrom C; Finestone A; Begin M; Olin C; Arndt T; Burr D
    Am J Sports Med; 2002; 30(6):866-70. PubMed ID: 12435654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-vivo strain measurements to evaluate the strengthening potential of exercises on the tibial bone.
    Milgrom C; Finestone A; Simkin A; Ekenman I; Mendelson S; Millgram M; Nyska M; Larsson E; Burr D
    J Bone Joint Surg Br; 2000 May; 82(4):591-4. PubMed ID: 10855890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of shoe sole composition on in vivo tibial strains during walking.
    Milgrom C; Finestone A; Ekenman I; Simkin A; Nyska M
    Foot Ankle Int; 2001 Jul; 22(7):598-602. PubMed ID: 11503988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of the effect of shoes on human tibial axial strains recorded during dynamic loading.
    Milgrom C; Burr D; Fyhrie D; Hoshaw S; Finestone A; Nyska M; Davidson R; Mendelson S; Giladi M; Liebergall M; Lehnert B; Voloshin A; Simkin A
    Foot Ankle Int; 1998 Feb; 19(2):85-90. PubMed ID: 9498580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A technique for the in vitro measurement of principal strains in the human tibia.
    Finlay JB; Bourne RB; McLean J
    J Biomech; 1982; 15(10):723-9. PubMed ID: 7153225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What do we currently know from in vivo bone strain measurements in humans?
    Yang PF; Brüggemann GP; Rittweger J
    J Musculoskelet Neuronal Interact; 2011 Mar; 11(1):8-20. PubMed ID: 21364270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft.
    Lanyon LE; Hampson WG; Goodship AE; Shah JS
    Acta Orthop Scand; 1975 May; 46(2):256-68. PubMed ID: 1146518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.