These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32829442)

  • 1. Grazing Pressure Is Independent of Prey Size in a Generalist Herbivorous Protist: Insights from Experimental Temperature Gradients.
    Cabrerizo MJ; Marañón E
    Microb Ecol; 2021 Apr; 81(3):553-562. PubMed ID: 32829442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Herbivorous protist growth and grazing rates at in situ and artificially elevated temperatures during an Arctic phytoplankton spring bloom.
    Menden-Deuer S; Lawrence C; Franzè G
    PeerJ; 2018; 6():e5264. PubMed ID: 30057859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth, Grazing, and Starvation Survival in Three Heterotrophic Dinoflagellate Species.
    Anderson SR; Menden-Deuer S
    J Eukaryot Microbiol; 2017 Mar; 64(2):213-225. PubMed ID: 27509231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential interactions between the nematocyst-bearing mixotrophic dinoflagellate Paragymnodinium shiwhaense and common heterotrophic protists and copepods: Killer or prey.
    Jeong HJ; Kim JS; Lee KH; Seong KA; Yoo YD; Kang NS; Kim TH; Song JY; Kwon JE
    Harmful Algae; 2017 Feb; 62():37-51. PubMed ID: 28118891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Easy visualization of the protist Oxyrrhis marina grazing on a live fluorescently labelled heterotrophic nanoflagellate.
    Martín-Cereceda M; Williams RA; Novarino G
    Curr Microbiol; 2008 Jul; 57(1):45-50. PubMed ID: 18392892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geographical and Seasonal Thermal Sensitivity of Grazing Pressure by Microzooplankton in Contrasting Marine Ecosystems.
    Cabrerizo MJ; Marañón E
    Front Microbiol; 2021; 12():679863. PubMed ID: 34290682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Planktonic prey size selection reveals an emergent keystone predator effect and niche partitioning.
    Taniguchi DAA; Follows MJ; Menden-Deuer S
    PLoS One; 2023; 18(2):e0280884. PubMed ID: 36780441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zooplankton grazing pressure is insufficient for primary producer control under elevated warming and nutrient levels.
    Gusha MNC; Dalu T; Wasserman RJ; McQuaid CD
    Sci Total Environ; 2019 Feb; 651(Pt 1):410-418. PubMed ID: 30240923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Future climate scenarios for a coastal productive planktonic food web resulting in microplankton phenology changes and decreased trophic transfer efficiency.
    Calbet A; Sazhin AF; Nejstgaard JC; Berger SA; Tait ZS; Olmos L; Sousoni D; Isari S; Martínez RA; Bouquet JM; Thompson EM; Båmstedt U; Jakobsen HH
    PLoS One; 2014; 9(4):e94388. PubMed ID: 24721992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What Underpins the Trophic Networks of the Plankton in Shallow Oxbow Lakes?
    Kosiba J; Wilk-Woźniak E; Krztoń W; Strzesak M; Pociecha A; Walusiak E; Pudaś K; Szarek-Gwiazda E
    Microb Ecol; 2017 Jan; 73(1):17-28. PubMed ID: 27544677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean.
    Armengol L; Calbet A; Franchy G; Rodríguez-Santos A; Hernández-León S
    Sci Rep; 2019 Feb; 9(1):2044. PubMed ID: 30765793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assimilation of diazotrophic nitrogen into pelagic food webs.
    Woodland RJ; Holland DP; Beardall J; Smith J; Scicluna T; Cook PL
    PLoS One; 2013; 8(6):e67588. PubMed ID: 23840744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomagnification of Methylmercury in a Marine Plankton Ecosystem.
    Wu P; Zakem EJ; Dutkiewicz S; Zhang Y
    Environ Sci Technol; 2020 May; 54(9):5446-5455. PubMed ID: 32054263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variability in protist grazing and growth on different marine Synechococcus isolates.
    Apple JK; Strom SL; Palenik B; Brahamsha B
    Appl Environ Microbiol; 2011 May; 77(9):3074-84. PubMed ID: 21398485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microzooplankton grazing and its key group composition in subtropical eutrophic coast of Southern China: in relation to environmental changes.
    Liu H; Li J; Huang H; Qi Z; Xiang C; Song X
    Ecotoxicology; 2021 Nov; 30(9):1816-1825. PubMed ID: 34379244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Body Size, Light Intensity, and Nutrient Supply Determine Plankton Stoichiometry in Mixotrophic Plankton Food Webs.
    Ho PC; Chang CW; Shiah FK; Wang PL; Hsieh CH; Andersen KH
    Am Nat; 2020 Apr; 195(4):E100-E111. PubMed ID: 32216662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinctive chemotactic responses of three marine herbivore protists to DMSP and related compounds.
    Güell-Bujons Q; Zanoli M; Tuval I; Calbet A; Simó R
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38995932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological responses of
    Goode AG; Fields DM; Archer SD; Martínez Martínez J
    PeerJ; 2019; 7():e6722. PubMed ID: 31041150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significance of predation by protists in aquatic microbial food webs.
    Sherr EB; Sherr BF
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):293-308. PubMed ID: 12448728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prey size diversity hinders biomass trophic transfer and predator size diversity promotes it in planktonic communities.
    García-Comas C; Sastri AR; Ye L; Chang CY; Lin FS; Su MS; Gong GC; Hsieh CH
    Proc Biol Sci; 2016 Feb; 283(1824):. PubMed ID: 26865298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.