BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32829640)

  • 1. Optimizing Eicosapentaenoic Acid Production by Grafting a Heterologous Polyketide Synthase Pathway in the Thraustochytrid
    Wang S; Lan C; Wang Z; Wan W; Zhang H; Cui Q; Song X
    J Agric Food Chem; 2020 Oct; 68(40):11253-11260. PubMed ID: 32829640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome Analysis Reveals an Eicosapentaenoic Acid Accumulation Mechanism in a
    Ou Y; Li Y; Feng S; Wang Q; Yang H
    Microbiol Spectr; 2023 Jun; 11(3):e0013023. PubMed ID: 37093006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole genome analysis and elucidation of docosahexaenoic acid (DHA) biosynthetic pathway in Aurantiochytrium sp. SW1.
    Prabhakaran P; Raethong N; Nazir Y; Halim H; Yang W; Vongsangnak W; Abdul Hamid A; Song Y
    Gene; 2022 Dec; 846():146850. PubMed ID: 36044942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DHA Production in Escherichia coli by Expressing Reconstituted Key Genes of Polyketide Synthase Pathway from Marine Bacteria.
    Peng YF; Chen WC; Xiao K; Xu L; Wang L; Wan X
    PLoS One; 2016; 11(9):e0162861. PubMed ID: 27649078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced production of fatty acids and astaxanthin in Aurantiochytrium sp. by the expression of Vitreoscilla hemoglobin.
    Suen YL; Tang H; Huang J; Chen F
    J Agric Food Chem; 2014 Dec; 62(51):12392-8. PubMed ID: 25420960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of polyunsaturated fatty acids by polyketide synthases.
    Kaulmann U; Hertweck C
    Angew Chem Int Ed Engl; 2002 Jun; 41(11):1866-9. PubMed ID: 19750617
    [No Abstract]   [Full Text] [Related]  

  • 7. Transcriptomic Profiling and Gene Disruption Revealed that Two Genes Related to PUFAs/DHA Biosynthesis May be Essential for Cell Growth of Aurantiochytrium sp.
    Liang Y; Liu Y; Tang J; Ma J; Cheng JJ; Daroch M
    Mar Drugs; 2018 Sep; 16(9):. PubMed ID: 30200435
    [No Abstract]   [Full Text] [Related]  

  • 8. Progress of metabolic engineering for the production of eicosapentaenoic acid.
    Jia YL; Geng SS; Du F; Xu YS; Wang LR; Sun XM; Wang QZ; Li Q
    Crit Rev Biotechnol; 2022 Sep; 42(6):838-855. PubMed ID: 34779326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of tandem acyl carrier protein domains in polyunsaturated fatty acid biosynthesis.
    Jiang H; Zirkle R; Metz JG; Braun L; Richter L; Van Lanen SG; Shen B
    J Am Chem Soc; 2008 May; 130(20):6336-7. PubMed ID: 18444614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-cultivation of Phaeodactylum tricornutum and Aurantiochytrium limacinum for polyunsaturated omega-3 fatty acids production.
    Kadalag NL; Pawar PR; Prakash G
    Bioresour Technol; 2022 Feb; 346():126544. PubMed ID: 34902489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Obtaining High-Purity Docosahexaenoic Acid Oil in Thraustochytrid
    Wang Z; Wang S; Feng Y; Wan W; Zhang H; Bai X; Cui Q; Song X
    J Agric Food Chem; 2021 Sep; 69(35):10215-10222. PubMed ID: 34415758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of fatty acid synthesis in marine fungus-like protists.
    Xie Y; Wang G
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8363-75. PubMed ID: 26286514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antigastric Cancer Bioactive Aurantiochytrium Oil Rich in Docosahexaenoic Acid: From Media Optimization to Cancer Cells Cytotoxicity Assessment.
    Shakeri S; Amoozyan N; Fekrat F; Maleki M
    J Food Sci; 2017 Nov; 82(11):2706-2718. PubMed ID: 29095488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tandem acyl carrier protein domains in polyunsaturated fatty acid synthases.
    Jiang H; Rajski SR; Shen B
    Methods Enzymol; 2009; 459():79-96. PubMed ID: 19362636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction and analysis of the genome-scale metabolic model of schizochytrium limacinum SR21 for docosahexaenoic acid production.
    Ye C; Qiao W; Yu X; Ji X; Huang H; Collier JL; Liu L
    BMC Genomics; 2015 Oct; 16():799. PubMed ID: 26475325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-quality genome-scale metabolic model of Aurantiochytrium sp. T66.
    Simensen V; Voigt A; Almaas E
    Biotechnol Bioeng; 2021 May; 118(5):2105-2117. PubMed ID: 33624839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual stress factors adaptive evolution for high EPA production in Schizochytrium sp. and metabolomics mechanism analysis.
    Ou Y; Qin Y; Feng S; Yang H
    Bioprocess Biosyst Eng; 2024 Jun; 47(6):863-875. PubMed ID: 38687387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of EPA/DHA omega-3 fatty acid production by Lactococcus lactis subsp. cremoris MG1363.
    Amiri-Jami M; Lapointe G; Griffiths MW
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):3071-80. PubMed ID: 24389665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increase of eicosapentaenoic acid in thraustochytrids through thraustochytrid ubiquitin promoter-driven expression of a fatty acid {delta}5 desaturase gene.
    Kobayashi T; Sakaguchi K; Matsuda T; Abe E; Hama Y; Hayashi M; Honda D; Okita Y; Sugimoto S; Okino N; Ito M
    Appl Environ Microbiol; 2011 Jun; 77(11):3870-6. PubMed ID: 21478316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of raw glycerol to produce oil rich in polyunsaturated fatty acids by a thraustochytrid.
    Scott SD; Armenta RE; Berryman KT; Norman AW
    Enzyme Microb Technol; 2011 Mar; 48(3):267-72. PubMed ID: 22112910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.