BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32830294)

  • 21. Asymmetric bioreduction of alkenes using ene-reductases YersER and KYE1 and effects of organic solvents.
    Yanto Y; Winkler CK; Lohr S; Hall M; Faber K; Bommarius AS
    Org Lett; 2011 May; 13(10):2540-3. PubMed ID: 21510626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymmetric Ene-Reduction by F
    Kang SW; Antoney J; Lupton DW; Speight R; Scott C; Jackson CJ
    Chembiochem; 2023 Apr; 24(8):e202200797. PubMed ID: 36716144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Classification and functional origins of stereocomplementary alcohol dehydrogenases for asymmetric synthesis of chiral secondary alcohols: A review.
    Zhang L; Sun Z; Xu G; Ni Y
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132238. PubMed ID: 38729463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The crystal structure of XdpB, the bacterial old yellow enzyme, in an FMN-free form.
    Zahradník J; Kolenko P; Palyzová A; Černý J; Kolářová L; Kyslíková E; Marešová H; Grulich M; Nunvar J; Šulc M; Kyslík P; Schneider B
    PLoS One; 2018; 13(4):e0195299. PubMed ID: 29630677
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two new ene-reductases from photosynthetic extremophiles enlarge the panel of old yellow enzymes: CtOYE and GsOYE.
    Robescu MS; Niero M; Hall M; Cendron L; Bergantino E
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2051-2066. PubMed ID: 31930452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ene-Reductase: A Multifaceted Biocatalyst in Organic Synthesis.
    Kumar Roy T; Sreedharan R; Ghosh P; Gandhi T; Maiti D
    Chemistry; 2022 Apr; 28(21):e202103949. PubMed ID: 35133702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Revealing Additional Stereocomplementary Pairs of Old Yellow Enzymes by Rational Transfer of Engineered Residues.
    Nett N; Duewel S; Richter AA; Hoebenreich S
    Chembiochem; 2017 Apr; 18(7):685-691. PubMed ID: 28107586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioreduction of alpha-methylcinnamaldehyde derivatives: chemo-enzymatic asymmetric synthesis of Lilial and Helional.
    Stueckler C; Mueller NJ; Winkler CK; Glueck SM; Gruber K; Steinkellner G; Faber K
    Dalton Trans; 2010 Sep; 39(36):8472-6. PubMed ID: 20461254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applications of protein engineering to members of the old yellow enzyme family.
    Amato ED; Stewart JD
    Biotechnol Adv; 2015; 33(5):624-31. PubMed ID: 25940546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative characterization and expression analysis of the four Old Yellow Enzyme homologues from Shewanella oneidensis indicate differences in physiological function.
    Brigé A; Van den Hemel D; Carpentier W; De Smet L; Van Beeumen JJ
    Biochem J; 2006 Feb; 394(Pt 1):335-44. PubMed ID: 16293111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional characterization and stability improvement of a 'thermophilic-like' ene-reductase from Rhodococcus opacus 1CP.
    Riedel A; Mehnert M; Paul CE; Westphal AH; van Berkel WJ; Tischler D
    Front Microbiol; 2015; 6():1073. PubMed ID: 26483784
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction between diterpene icetexanes and old yellow enzymes of Leishmania braziliensis and Trypanosoma cruzi.
    Libardi SH; Ahmad A; Ferreira FB; Oliveira RJ; Caruso ÍP; Melo FA; de Albuquerque S; Cardoso DR; Burtoloso ACB; Borges JC
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129192. PubMed ID: 38216013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative characterization of novel ene-reductases from cyanobacteria.
    Fu Y; Castiglione K; Weuster-Botz D
    Biotechnol Bioeng; 2013 May; 110(5):1293-301. PubMed ID: 23280373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Old yellow enzyme of a novel fungi-specific class.
    Yamasaki K
    FEBS J; 2022 Sep; 289(18):5527-5530. PubMed ID: 35587530
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis.
    Kohls H; Steffen-Munsberg F; Höhne M
    Curr Opin Chem Biol; 2014 Apr; 19():180-92. PubMed ID: 24721252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering aldolases as biocatalysts.
    Windle CL; Müller M; Nelson A; Berry A
    Curr Opin Chem Biol; 2014 Apr; 19(100):25-33. PubMed ID: 24780276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of (S)-selective transaminases for the asymmetric synthesis of bulky chiral amines.
    Pavlidis IV; Weiß MS; Genz M; Spurr P; Hanlon SP; Wirz B; Iding H; Bornscheuer UT
    Nat Chem; 2016 Nov; 8(11):1076-1082. PubMed ID: 27768108
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzymes useful for chiral compound synthesis: structural biology, directed evolution, and protein engineering for industrial use.
    Kataoka M; Miyakawa T; Shimizu S; Tanokura M
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5747-57. PubMed ID: 27188776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and Cooperativity in Substrate-Enzyme Interactions: Perspectives on Enzyme Engineering and Inhibitor Design.
    Rajakumara E; Abhishek S; Nitin K; Saniya D; Bajaj P; Schwaneberg U; Davari MD
    ACS Chem Biol; 2022 Feb; 17(2):266-280. PubMed ID: 35041385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family.
    Stuermer R; Hauer B; Hall M; Faber K
    Curr Opin Chem Biol; 2007 Apr; 11(2):203-13. PubMed ID: 17353140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.