These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 32830294)

  • 41. Enoate reductases from non conventional yeasts: bioconversion, cloning, and functional expression in Saccharomyces cerevisiae.
    Raimondi S; Romano D; Amaretti A; Molinari F; Rossi M
    J Biotechnol; 2011 Dec; 156(4):279-85. PubMed ID: 21933690
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stereocomplementary bioreduction of β-ketonitrile without ethylated byproduct.
    Xu GC; Yu HL; Zhang ZJ; Xu JH
    Org Lett; 2013 Nov; 15(21):5408-11. PubMed ID: 24144203
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dicarbonyl reduction by single enzyme for the preparation of chiral diols.
    Chen Y; Chen C; Wu X
    Chem Soc Rev; 2012 Mar; 41(5):1742-53. PubMed ID: 22222186
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Loop-Grafted Old Yellow Enzymes in the Bienzymatic Cascade Reduction of Allylic Alcohols.
    Reich S; Nestl BM; Hauer B
    Chembiochem; 2016 Apr; 17(7):561-5. PubMed ID: 27037735
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stereodivergent Evolution of Artificial Enzymes for the Michael Reaction.
    Garrabou X; Macdonald DS; Wicky BIM; Hilvert D
    Angew Chem Int Ed Engl; 2018 May; 57(19):5288-5291. PubMed ID: 29446221
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using mutability landscapes of a promiscuous tautomerase to guide the engineering of enantioselective Michaelases.
    van der Meer JY; Poddar H; Baas BJ; Miao Y; Rahimi M; Kunzendorf A; van Merkerk R; Tepper PG; Geertsema EM; Thunnissen AM; Quax WJ; Poelarends GJ
    Nat Commun; 2016 Mar; 7():10911. PubMed ID: 26952338
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New developments in 'ene'-reductase catalysed biological hydrogenations.
    Toogood HS; Scrutton NS
    Curr Opin Chem Biol; 2014 Apr; 19():107-15. PubMed ID: 24608082
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deciphering the evolution of flavin-dependent monooxygenase stereoselectivity using ancestral sequence reconstruction.
    Chiang CH; Wymore T; Rodríguez Benítez A; Hussain A; Smith JL; Brooks CL; Narayan ARH
    Proc Natl Acad Sci U S A; 2023 Apr; 120(15):e2218248120. PubMed ID: 37014851
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Scalable biocatalytic synthesis of optically pure ethyl (R)-2-hydroxy-4-phenylbutyrate using a recombinant E. coli with high catalyst yield.
    Ni Y; Su Y; Li H; Zhou J; Sun Z
    J Biotechnol; 2013 Dec; 168(4):493-8. PubMed ID: 24120725
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Asymmetric alkene reduction by yeast old yellow enzymes and by a novel Zymomonas mobilis reductase.
    Müller A; Hauer B; Rosche B
    Biotechnol Bioeng; 2007 Sep; 98(1):22-9. PubMed ID: 17657768
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In Silico Engineering of Enzyme Access Tunnels.
    Gautieri A; Rigoldi F; Torretta A; Redaelli A; Parisini E
    Methods Mol Biol; 2022; 2397():203-225. PubMed ID: 34813066
    [TBL] [Abstract][Full Text] [Related]  

  • 52. STRUCTURAL AND FUNCTIONAL CONSEQUENCES OF CIRCULAR PERMUTATION ON THE ACTIVE SITE OF OLD YELLOW ENZYME.
    Daugherty AB; Horton JR; Cheng X; Lutz S
    ACS Catal; 2015 Feb; 5(2):892-899. PubMed ID: 25692074
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural investigation into the C-terminal extension of the ene-reductase from Ralstonia (Cupriavidus) metallidurans.
    Opperman DJ
    Proteins; 2017 Dec; 85(12):2252-2257. PubMed ID: 28833623
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Catalytic Performance of a Class III Old Yellow Enzyme and Its Cysteine Variants.
    Scholtissek A; Gädke E; Paul CE; Westphal AH; van Berkel WJH; Tischler D
    Front Microbiol; 2018; 9():2410. PubMed ID: 30369915
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unlocking the Stereoselectivity and Substrate Acceptance of Enzymes: Proline-Induced Loop Engineering Test.
    Qu G; Bi Y; Liu B; Li J; Han X; Liu W; Jiang Y; Qin Z; Sun Z
    Angew Chem Int Ed Engl; 2022 Jan; 61(1):e202110793. PubMed ID: 34658118
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biocatalytic Asymmetric Alkene Reduction: Crystal Structure and Characterization of a Double Bond Reductase from
    Mansell DJ; Toogood HS; Waller J; Hughes JM; Levy CW; Gardiner JM; Scrutton NS
    ACS Catal; 2013 Mar; 3(3):370-379. PubMed ID: 27547488
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Substrate scope and synthetic applications of the enantioselective reduction of α-alkyl-β-arylenones mediated by Old Yellow Enzymes.
    Brenna E; Cosi SL; Ferrandi EE; Gatti FG; Monti D; Parmeggiani F; Sacchetti A
    Org Biomol Chem; 2013 May; 11(18):2988-96. PubMed ID: 23532545
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Computer-aided understanding and engineering of enzymatic selectivity.
    Wu L; Qin L; Nie Y; Xu Y; Zhao YL
    Biotechnol Adv; 2022; 54():107793. PubMed ID: 34217814
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Engineering the enantioselectivity of biocatalysts].
    Zhu D; Wu Q
    Sheng Wu Gong Cheng Xue Bao; 2009 Dec; 25(12):1770-8. PubMed ID: 20352950
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transaminases for industrial biocatalysis: novel enzyme discovery.
    Kelly SA; Mix S; Moody TS; Gilmore BF
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4781-4794. PubMed ID: 32300853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.