These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 32830335)

  • 1. Cathodes for Aqueous Zn-Ion Batteries: Materials, Mechanisms, and Kinetics.
    Zuo S; Xu X; Ji S; Wang Z; Liu Z; Liu J
    Chemistry; 2021 Jan; 27(3):830-860. PubMed ID: 32830335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cathode materials for aqueous zinc-ion batteries: A mini review.
    Zhou T; Zhu L; Xie L; Han Q; Yang X; Chen L; Wang G; Cao X
    J Colloid Interface Sci; 2022 Jan; 605():828-850. PubMed ID: 34371427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical Issues of Vanadium-Based Cathodes Towards Practical Aqueous Zn-Ion Batteries.
    Jiang W; Zhu K; Yang W
    Chemistry; 2023 Oct; 29(56):e202301769. PubMed ID: 37409517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design Strategies for Vanadium-based Aqueous Zinc-Ion Batteries.
    Wan F; Niu Z
    Angew Chem Int Ed Engl; 2019 Nov; 58(46):16358-16367. PubMed ID: 31050086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Developments and Challenges of Vanadium Oxides (V
    Zhou T; Han Q; Xie L; Yang X; Zhu L; Cao X
    Chem Rec; 2022 Apr; 22(4):e202100275. PubMed ID: 34962053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vanadium-Based Cathodes for Aqueous Zinc-Ion Batteries: Mechanisms, Challenges, and Strategies.
    Zhu K; Yang W
    Acc Chem Res; 2024 Oct; 57(19):2887-2900. PubMed ID: 39279672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comprehensive Understanding of Interlayer Engineering in Layered Manganese and Vanadium Cathodes for Aqueous Zn-Ion Batteries.
    Sun Q; Cheng H; Nie W; Lu X; Zhao H
    Chem Asian J; 2022 Apr; 17(7):e202200067. PubMed ID: 35188329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the kinetics of vanadium oxides via conducting polymer and metal ions co-intercalation for high-performance aqueous zinc-ions batteries.
    Yan X; Feng X; Hao B; Liu J; Yu Y; Qi J; Wang H; Wang Z; Hu Y; Fan X; Li C; Liu J
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):204-213. PubMed ID: 35988515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterojunction tunnelled vanadium-based cathode materials for high-performance aqueous zinc ion batteries.
    Hu H; Zhao P; Li X; Liu J; Liu H; Sun B; Pan K; Song K; Cheng H
    J Colloid Interface Sci; 2024 Jul; 665():564-572. PubMed ID: 38552573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rechargeable Zn-MnO
    Liu X; Yi J; Wu K; Jiang Y; Liu Y; Zhao B; Li W; Zhang J
    Nanotechnology; 2020 Mar; 31(12):122001. PubMed ID: 31766031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Promotion of Research Progress of Zinc Manganate Cathode Materials for Zinc-Ion Batteries by Characterization and Analysis Technology.
    Meng X; Cheng Z; Li L
    Molecules; 2023 May; 28(11):. PubMed ID: 37298934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordinately Unsaturated Manganese-Based Metal-Organic Frameworks as a High-Performance Cathode for Aqueous Zinc-Ion Batteries.
    Yin C; Pan C; Liao X; Pan Y; Yuan L
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35837-35847. PubMed ID: 34297523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zinc-Ion Batteries.
    Hao J; Yuan L; Johannessen B; Zhu Y; Jiao Y; Ye C; Xie F; Qiao SZ
    Angew Chem Int Ed Engl; 2021 Nov; 60(47):25114-25121. PubMed ID: 34553459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent development of manganese dioxide-based materials as zinc-ion battery cathode.
    Jia S; Li L; Shi Y; Wang C; Cao M; Ji Y; Zhang D
    Nanoscale; 2024 Jan; 16(4):1539-1576. PubMed ID: 38170865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing the Impact of Oxygen Dissolved in Electrolytes on Aqueous Zinc-Ion Batteries.
    Su L; Liu L; Liu B; Meng J; Yan X
    iScience; 2020 Apr; 23(4):100995. PubMed ID: 32252019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Material Design and Energy Storage Mechanism of Mn-Based Cathodes for Aqueous Zinc-Ion Batteries.
    Xie S; Li X; Li Y; Liang Q; Dong L
    Chem Rec; 2022 Oct; 22(10):e202200201. PubMed ID: 36126168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tremella-like Hydrated Vanadium Oxide Cathode with an Architectural Design Strategy toward Ultralong Lifespan Aqueous Zinc-Ion Batteries.
    Guan X; Sun Q; Sun C; Duan T; Nie W; Liu Y; Zhao K; Cheng H; Lu X
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41688-41697. PubMed ID: 34436858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances of Transition Metal Chalcogenides as Cathode Materials for Aqueous Zinc-Ion Batteries.
    Liu Y; Wu X
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Stable Aqueous Zinc-Ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode.
    Xia C; Guo J; Li P; Zhang X; Alshareef HN
    Angew Chem Int Ed Engl; 2018 Apr; 57(15):3943-3948. PubMed ID: 29432667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superior-Performance Aqueous Zinc-Ion Batteries Based on the
    Zhu X; Cao Z; Wang W; Li H; Dong J; Gao S; Xu D; Li L; Shen J; Ye M
    ACS Nano; 2021 Feb; 15(2):2971-2983. PubMed ID: 33492135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.