BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32830402)

  • 1. Differential distribution and proteomic response of Saccharomyces cerevisiae and non-model yeast species to zinc.
    García-Béjar B; Owens RA; Briones A; Arévalo-Villena M
    Environ Microbiol; 2020 Nov; 22(11):4633-4646. PubMed ID: 32830402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetaldehyde addition throughout the growth phase alleviates the phenotypic effect of zinc deficiency in Saccharomyces cerevisiae.
    Cheraiti N; Sauvage FX; Salmon JM
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1093-109. PubMed ID: 17938904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative proteomic analysis of the effects of a GalNAc/Man-specific lectin CSL on yeast cells by label-free LC-MS.
    Liu S; Li L; Tong C; Zhao Q; Lukyanov PA; Chernikov OV; Li W
    Int J Biol Macromol; 2016 Apr; 85():530-8. PubMed ID: 26794310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast Interspecies Comparative Proteomics Reveals Divergence in Expression Profiles and Provides Insights into Proteome Resource Allocation and Evolutionary Roles of Gene Duplication.
    Kito K; Ito H; Nohara T; Ohnishi M; Ishibashi Y; Takeda D
    Mol Cell Proteomics; 2016 Jan; 15(1):218-35. PubMed ID: 26560065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cellular economy of the Saccharomyces cerevisiae zinc proteome.
    Wang Y; Weisenhorn E; MacDiarmid CW; Andreini C; Bucci M; Taggart J; Banci L; Russell J; Coon JJ; Eide DJ
    Metallomics; 2018 Dec; 10(12):1755-1776. PubMed ID: 30358795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources.
    Zhao S; Zhao X; Zou H; Fu J; Du G; Zhou J; Chen J
    J Proteomics; 2014 Apr; 101():102-12. PubMed ID: 24530623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomics: where's Waldo in yeast?
    Wohlschlegel JA; Yates JR
    Nature; 2003 Oct; 425(6959):671-2. PubMed ID: 14562083
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparative proteomics profile of lipid-cumulating oleaginous yeast: an iTRAQ-coupled 2-D LC-MS/MS analysis.
    Shi J; Feng H; Lee J; Ning Chen W
    PLoS One; 2013; 8(12):e85532. PubMed ID: 24386479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye.
    Faria-Oliveira F; Carvalho J; Ferreira C; Hernáez ML; Gil C; Lucas C
    BMC Microbiol; 2015 Nov; 15():271. PubMed ID: 26608260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated transcriptomic and proteomic analysis of the ethanol stress response in Saccharomyces cerevisiae Sc131.
    Li R; Miao Y; Yuan S; Li Y; Wu Z; Weng P
    J Proteomics; 2019 Jul; 203():103377. PubMed ID: 31102756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A proteome-integrated, carbon source dependent genetic regulatory network in Saccharomyces cerevisiae.
    Garcia-Albornoz M; Holman SW; Antonisse T; Daran-Lapujade P; Teusink B; Beynon RJ; Hubbard SJ
    Mol Omics; 2020 Feb; 16(1):59-72. PubMed ID: 31868867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes.
    de Groot MJL; Daran-Lapujade P; van Breukelen B; Knijnenburg TA; de Hulster EAF; Reinders MJT; Pronk JT; Heck AJR; Slijper M
    Microbiology (Reading); 2007 Nov; 153(Pt 11):3864-3878. PubMed ID: 17975095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of global yeast quantitative proteome data generated from the wild-type and glucose repression saccharomyces cerevisiae strains: the comparison of two quantitative methods.
    Usaite R; Wohlschlegel J; Venable JD; Park SK; Nielsen J; Olsson L; Yates Iii JR
    J Proteome Res; 2008 Jan; 7(1):266-75. PubMed ID: 18173223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A label free quantitative proteomic analysis of the Saccharomyces cerevisiae nucleus.
    Mosley AL; Florens L; Wen Z; Washburn MP
    J Proteomics; 2009 Feb; 72(1):110-20. PubMed ID: 19038371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc homeostasis in the secretory pathway in yeast.
    Bird AJ; Wilson S
    Curr Opin Chem Biol; 2020 Apr; 55():145-150. PubMed ID: 32114317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative mass spectrometry-based multiplexing compares the abundance of 5000 S. cerevisiae proteins across 10 carbon sources.
    Paulo JA; O'Connell JD; Everley RA; O'Brien J; Gygi MA; Gygi SP
    J Proteomics; 2016 Oct; 148():85-93. PubMed ID: 27432472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae.
    Paulo JA; O'Connell JD; Gaun A; Gygi SP
    Mol Biol Cell; 2015 Nov; 26(22):4063-74. PubMed ID: 26399295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Mechanism of Thermotolerance Distinct From Heat Shock Response Through Proteomic Analysis of Industrial Strains of Saccharomyces cerevisiae.
    Shui W; Xiong Y; Xiao W; Qi X; Zhang Y; Lin Y; Guo Y; Zhang Z; Wang Q; Ma Y
    Mol Cell Proteomics; 2015 Jul; 14(7):1885-97. PubMed ID: 25926660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproducibility of combinatorial peptide ligand libraries for proteome capture evaluated by selected reaction monitoring.
    Di Girolamo F; Righetti PG; Soste M; Feng Y; Picotti P
    J Proteomics; 2013 Aug; 89():215-26. PubMed ID: 23747450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic profiling and glycomic analysis of the yeast cell wall in strains with Aflatoxin B
    García-Béjar B; Owens RA; Briones A; Arévalo-Villena M
    Environ Microbiol; 2021 Sep; 23(9):5305-5319. PubMed ID: 34029450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.