These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32830451)

  • 1. Ligand-based Activity Cliff Prediction Models with Applicability Domain.
    Tamura S; Miyao T; Funatsu K
    Mol Inform; 2020 Dec; 39(12):e2000103. PubMed ID: 32830451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpretation of Ligand-Based Activity Cliff Prediction Models Using the Matched Molecular Pair Kernel.
    Tamura S; Jasial S; Miyao T; Funatsu K
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MMP-Cliffs: systematic identification of activity cliffs on the basis of matched molecular pairs.
    Hu X; Hu Y; Vogt M; Stumpfe D; Bajorath J
    J Chem Inf Model; 2012 May; 52(5):1138-45. PubMed ID: 22489665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Activity Cliffs Using Condensed Graphs of Reaction Representations, Descriptor Recombination, Support Vector Machine Classification, and Support Vector Regression.
    Horvath D; Marcou G; Varnek A; Kayastha S; de la Vega de León A; Bajorath J
    J Chem Inf Model; 2016 Sep; 56(9):1631-40. PubMed ID: 27564682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extending the activity cliff concept: structural categorization of activity cliffs and systematic identification of different types of cliffs in the ChEMBL database.
    Hu Y; Bajorath J
    J Chem Inf Model; 2012 Jul; 52(7):1806-11. PubMed ID: 22758389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of individual compounds forming activity cliffs using emerging chemical patterns.
    Namasivayam V; Iyer P; Bajorath J
    J Chem Inf Model; 2013 Dec; 53(12):3131-9. PubMed ID: 24304008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method for the evaluation of structure-activity relationship information associated with coordinated activity cliffs.
    Dimova D; Stumpfe D; Bajorath J
    J Med Chem; 2014 Aug; 57(15):6553-63. PubMed ID: 25014781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of activity cliffs is accompanied by systematic increases in ligand efficiency from lowly to highly potent compounds.
    de la Vega de León A; Bajorath J
    AAPS J; 2014 Mar; 16(2):335-41. PubMed ID: 24477941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of activity cliffs using support vector machines.
    Heikamp K; Hu X; Yan A; Bajorath J
    J Chem Inf Model; 2012 Sep; 52(9):2354-65. PubMed ID: 22894655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OLB-AC: toward optimizing ligand bioactivities through deep graph learning and activity cliffs.
    Yin Y; Hu H; Yang J; Ye C; Goh WWB; Kong AW; Wu J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38889277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of activity cliffs on the basis of images using convolutional neural networks.
    Iqbal J; Vogt M; Bajorath J
    J Comput Aided Mol Des; 2021 Dec; 35(12):1157-1164. PubMed ID: 33740200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of compound potency changes in matched molecular pairs using support vector regression.
    de la Vega de León A; Bajorath J
    J Chem Inf Model; 2014 Oct; 54(10):2654-63. PubMed ID: 25191787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring QSAR models for activity-cliff prediction.
    Dablander M; Hanser T; Lambiotte R; Morris GM
    J Cheminform; 2023 Apr; 15(1):47. PubMed ID: 37069675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Second-generation activity cliffs identified on the basis of target set-dependent potency difference criteria.
    Hu H; Stumpfe D; Bajorath J
    Future Med Chem; 2019 Mar; 11(5):379-394. PubMed ID: 30887828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomy of Potency Predictions Focusing on Structural Analogues with Increasing Potency Differences Including Activity Cliffs.
    Janela T; Bajorath J
    J Chem Inf Model; 2023 Nov; 63(22):7032-7044. PubMed ID: 37943257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical substitutions that introduce activity cliffs across different compound classes and biological targets.
    Wassermann AM; Bajorath J
    J Chem Inf Model; 2010 Jul; 50(7):1248-56. PubMed ID: 20608746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do medicinal chemists learn from activity cliffs? A systematic evaluation of cliff progression in evolving compound data sets.
    Dimova D; Heikamp K; Stumpfe D; Bajorath J
    J Med Chem; 2013 Apr; 56(8):3339-45. PubMed ID: 23527828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in exploring activity cliffs.
    Stumpfe D; Hu H; Bajorath J
    J Comput Aided Mol Des; 2020 Sep; 34(9):929-942. PubMed ID: 32367387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Activity Cliff Generators of PPAR Ligands Using SAS Maps.
    Méndez-Lucio O; Pérez-Villanueva J; Castillo R; Medina-Franco JL
    Mol Inform; 2012 Dec; 31(11-12):837-46. PubMed ID: 27476737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Interaction Hot Spots in Structures of Drug Targets on the Basis of Three-Dimensional Activity Cliff Information.
    Furtmann N; Hu Y; Gütschow M; Bajorath J
    Chem Biol Drug Des; 2015 Dec; 86(6):1458-65. PubMed ID: 26094578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.