BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32830502)

  • 1. Inverse Electron Demand Diels-Alder Reactions in the Liposomal Membrane Accelerates Release of the Encapsulated Drugs.
    Kannaka K; Sano K; Nakahara H; Munekane M; Hagimori M; Yamasaki T; Mukai T
    Langmuir; 2020 Sep; 36(36):10750-10755. PubMed ID: 32830502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Therapeutic Effect of Liposomal Doxorubicin
    Kannaka K; Sano K; Munekane M; Yamasaki T; Hagimori M; Mukai T
    Mol Pharm; 2022 May; 19(5):1400-1409. PubMed ID: 35404619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of an amphiphilic tetrazine derivative and its application as a liposomal component to accelerate release of encapsulated drugs.
    Kannaka K; Sano K; Hagimori M; Yamasaki T; Munekane M; Mukai T
    Bioorg Med Chem; 2019 Aug; 27(16):3613-3618. PubMed ID: 31300319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse electron-demand diels-alder reactions of tetrazine and norbornene at the air-water interface.
    Nakahara H; Hagimori M; Kannaka K; Mukai T; Shibata O
    Colloids Surf B Biointerfaces; 2022 Mar; 211():112333. PubMed ID: 35038654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolytically Degradable PEG-Based Inverse Electron Demand Diels-Alder Click Hydrogels.
    Dimmitt NH; Arkenberg MR; de Lima Perini MM; Li J; Lin CC
    ACS Biomater Sci Eng; 2022 Oct; 8(10):4262-4273. PubMed ID: 36074814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational insights into the inverse electron-demand Diels-Alder reaction of norbornenes with 1,2,4,5-tetrazines: norbornene substituents' effects on the reaction rate.
    García-Aznar P; Escorihuela J
    Org Biomol Chem; 2022 Aug; 20(32):6400-6412. PubMed ID: 35876298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast Absorbent and Highly Bioorthogonal Hydrogels Developed by IEDDA Click Reaction for Drug Delivery Application.
    Joo SB; Gulfam M; Jo SH; Jo YJ; Vu TT; Park SH; Gal YS; Lim KT
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic studies of inverse electron demand Diels-Alder reactions (iEDDA) of norbornenes and 3,6-dipyridin-2-yl-1,2,4,5-tetrazine.
    Knall AC; Hollauf M; Slugovc C
    Tetrahedron Lett; 2014 Aug; 55(34):4763-4766. PubMed ID: 25152544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Norbornylated Cellulose and Its "Click" Modification by an Inverse-Electron Demand Diels-Alder (iEDDA) Reaction.
    Wappl C; Schallert V; Slugovc C; Knall AC; Spirk S
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33806278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the inverse electron demand Diels-Alder reaction in rats using a scandium-44-labelled tetrazine for pretargeted PET imaging.
    Edem PE; Sinnes JP; Pektor S; Bausbacher N; Rossin R; Yazdani A; Miederer M; Kjær A; Valliant JF; Robillard MS; Rösch F; Herth MM
    EJNMMI Res; 2019 May; 9(1):49. PubMed ID: 31140047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal Control of Efficient
    Yang B; Kwon K; Jana S; Kim S; Avila-Crump S; Tae G; Mehl RA; Kwon I
    Bioconjug Chem; 2020 Oct; 31(10):2456-2464. PubMed ID: 33034448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction-responsive and bioorthogonal carboxymethyl cellulose based soft hydrogels cross-linked via IEDDA click chemistry for cancer therapy application.
    Ali I; Gulfam M; Jo SH; Seo JW; Rizwan A; Park SH; Lim KT
    Int J Biol Macromol; 2022 Oct; 219():109-120. PubMed ID: 35931291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse electron demand Diels-Alder (IEDDA) reactions in peptide chemistry.
    Pagel M
    J Pept Sci; 2019 Jan; 25(1):e3141. PubMed ID: 30585397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aromatic Heterocycles as Productive Dienophiles in the Inverse Electron-Demand Diels-Alder Reactions of 1,3,5-Triazines.
    Xu G; Bai X; Dang Q
    Acc Chem Res; 2020 Apr; 53(4):773-781. PubMed ID: 32227911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perifosine induced release of contents of trans cell-barrier transport efficient liposomes.
    Koklic T
    Chem Phys Lipids; 2014 Oct; 183():50-9. PubMed ID: 24863642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse electron demand Diels-Alder reactions in chemical biology.
    Oliveira BL; Guo Z; Bernardes GJL
    Chem Soc Rev; 2017 Aug; 46(16):4895-4950. PubMed ID: 28660957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradable and Multifunctional PEG-Based Hydrogels Formed by iEDDA Click Chemistry with Stable Click-Induced Supramolecular Interactions.
    Dimmitt NH; Lin CC
    Macromolecules; 2024 Feb; 57(4):1556-1568. PubMed ID: 38435678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Norbornenes in inverse electron-demand Diels-Alder reactions.
    Vrabel M; Kölle P; Brunner KM; Gattner MJ; López-Carrillo V; de Vivie-Riedle R; Carell T
    Chemistry; 2013 Sep; 19(40):13309-12. PubMed ID: 24027163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcein permeation across phosphatidylcholine bilayer membrane: effects of membrane fluidity, liposome size, and immobilization.
    Shimanouchi T; Ishii H; Yoshimoto N; Umakoshi H; Kuboi R
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):156-60. PubMed ID: 19560324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.