BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32830651)

  • 1. Binding of metal ions and water molecules to nucleic acid bases: the influence of water molecule coordination to a metal ion on water-nucleic acid base hydrogen bonds.
    Andrić JM; Stanković IM; Zarić SD
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2019 Jun; 75(Pt 3):301-309. PubMed ID: 32830651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of water molecule coordination to a metal ion on water hydrogen bonds.
    Andrić JM; Janjić GV; Ninković DB; Zarić SD
    Phys Chem Chem Phys; 2012 Aug; 14(31):10896-8. PubMed ID: 22772777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs.
    Takezawa Y; Shionoya M
    Acc Chem Res; 2012 Dec; 45(12):2066-76. PubMed ID: 22452649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidation of metal-ion accumulation induced by hydrogen bonds on protein surfaces by using porous lysozyme crystals containing Rh(III) ions as the model surfaces.
    Ueno T; Abe S; Koshiyama T; Ohki T; Hikage T; Watanabe Y
    Chemistry; 2010 Mar; 16(9):2730-40. PubMed ID: 20146274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen bonds of a water molecule in the second coordination sphere of amino acid metal complexes: Influence of amino acid coordination.
    Zrilić SS; Živković JM; Zarić SD
    J Inorg Biochem; 2023 May; 242():112151. PubMed ID: 36857976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains.
    Cheng AC; Chen WW; Fuhrmann CN; Frankel AD
    J Mol Biol; 2003 Apr; 327(4):781-96. PubMed ID: 12654263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MINAS--a database of Metal Ions in Nucleic AcidS.
    Schnabl J; Suter P; Sigel RK
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D434-8. PubMed ID: 22096233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thymine-metal ion interactions: relevance for thymine quartet structures.
    Freisinger E; Schimanski A; Lippert B
    J Biol Inorg Chem; 2001 Apr; 6(4):378-89. PubMed ID: 11372196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A stability concept for metal ion coordination to single-stranded nucleic acids and affinities of individual sites.
    Sigel RK; Sigel H
    Acc Chem Res; 2010 Jul; 43(7):974-84. PubMed ID: 20235593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family.
    Sharma P; Mitra A; Sharma S; Singh H; Bhattacharyya D
    J Biomol Struct Dyn; 2008 Jun; 25(6):709-32. PubMed ID: 18399704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydration and stability of nucleic acid bases and base pairs.
    Kabelác M; Hobza P
    Phys Chem Chem Phys; 2007 Feb; 9(8):903-17. PubMed ID: 17301881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersion interactions between urea and nucleobases contribute to the destabilization of RNA by urea in aqueous solution.
    Kasavajhala K; Bikkina S; Patil I; MacKerell AD; Priyakumar UD
    J Phys Chem B; 2015 Mar; 119(9):3755-61. PubMed ID: 25668757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced metal ion selectivity of 2,9-di-(pyrid-2-yl)-1,10-phenanthroline and its use as a fluorescent sensor for cadmium(II).
    Cockrell GM; Zhang G; VanDerveer DG; Thummel RP; Hancock RD
    J Am Chem Soc; 2008 Jan; 130(4):1420-30. PubMed ID: 18177045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases.
    Sponer J; Leszczynski J; Hobza P
    Biopolymers; 2001-2002; 61(1):3-31. PubMed ID: 11891626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing hydrogen bonding and ion-carbonyl interactions by solid-state 17O NMR spectroscopy: G-ribbon and G-quartet.
    Kwan IC; Mo X; Wu G
    J Am Chem Soc; 2007 Feb; 129(8):2398-407. PubMed ID: 17269776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine.
    Remko M; Rode BM
    J Phys Chem A; 2006 Feb; 110(5):1960-7. PubMed ID: 16451030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water molecules in DNA recognition II: a molecular dynamics view of the structure and hydration of the trp operator.
    Bonvin AM; Sunnerhagen M; Otting G; van Gunsteren WF
    J Mol Biol; 1998 Oct; 282(4):859-73. PubMed ID: 9743632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydration sites of unpaired RNA bases: a statistical analysis of the PDB structures.
    Kirillova S; Carugo O
    BMC Struct Biol; 2011 Oct; 11():41. PubMed ID: 22011380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. At nonzero temperatures, stacked structures of methylated nucleic acid base pairs and microhydrated nonmethylated nucleic acid base pairs are favored over planar hydrogen-bonded structures: a molecular dynamics simulations study.
    Kabelác M; Hobza P
    Chemistry; 2001 May; 7(10):2067-74. PubMed ID: 11411979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water and ion binding around RNA and DNA (C,G) oligomers.
    Auffinger P; Westhof E
    J Mol Biol; 2000 Jul; 300(5):1113-31. PubMed ID: 10903858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.