BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32830837)

  • 1. Superhydrophobic graphene-coated sponge with microcavities for high efficiency oil-in-water emulsion separation.
    Han L; Bi H; Xie X; Su S; Mao P; Sun L
    Nanoscale; 2020 Sep; 12(34):17812-17820. PubMed ID: 32830837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Superhydrophobic PDMS@SiO
    Zhai G; Wu J; Yuan Z; Li H; Sun D
    Inorg Chem; 2023 Apr; 62(14):5447-5457. PubMed ID: 36961917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorine-Functionalized Covalent Organic Framework Superhydrophobic Modified Melamine Sponge for Efficient oil-water Separation.
    Zhang Y; Fu J; Xue W; Liu G; Wu R
    Langmuir; 2024 Mar; 40(12):6413-6423. PubMed ID: 38469661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superhydrophobic Melamine Sponge Coated with Striped Polydimethylsiloxane by Thiol-Ene Click Reaction for Efficient Oil/Water Separation.
    Peng J; Deng J; Quan Y; Yu C; Wang H; Gong Y; Liu Y; Deng W
    ACS Omega; 2018 May; 3(5):5222-5228. PubMed ID: 31458735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient oil-in-water emulsion and oil layer/water mixture separation based on durably superhydrophobic sponge prepared via a facile route.
    Wang J; Wang H; Geng G
    Mar Pollut Bull; 2018 Feb; 127():108-116. PubMed ID: 29475642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile and sustainable fabrication of high-performance cellulose sponge from cotton for oil-in-water emulsion separation.
    Yang S; Chen L; Liu S; Hou W; Zhu J; Zhao P; Zhang Q
    J Hazard Mater; 2021 Apr; 408():124408. PubMed ID: 33168311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Fabrication of Superhydrophobic Graphene/Polystyrene Foams for Efficient and Continuous Separation of Immiscible and Emulsified Oil/Water Mixtures.
    Zhao C; Huang H; Li J; Li Y; Xiang D; Wu Y; Wang G; Qin M
    Polymers (Basel); 2022 Jun; 14(11):. PubMed ID: 35683962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile synthesis of superhydrophobic MS/TiO
    Yang J; Yang X; Jia Y; Li B; Shi Q
    Water Sci Technol; 2021 Oct; 84(8):2040-2056. PubMed ID: 34695029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic cellulose nanocrystalline sponge sheets with ultrahigh water fluxes and oil/water selectivity.
    Qiao A; Huang R; Wu J; Qi W; Su R
    Carbohydr Polym; 2023 Jul; 312():120807. PubMed ID: 37059539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superhydrophobic nanofibrous sponge with hierarchically layered structure for efficient harsh environmental oil-water separation.
    Liu X; Liu Z; Wang X; Gao Y; Zhang J; Fan T; Ning X; Ramakrishna S; Long YZ
    J Hazard Mater; 2022 Oct; 440():129790. PubMed ID: 36007362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of a two-tier hierarchical structured superhydrophobic-superoleophilic melamine sponge for rapid and efficient oil/water separation.
    Chen J; You H; Xu L; Li T; Jiang X; Li CM
    J Colloid Interface Sci; 2017 Nov; 506():659-668. PubMed ID: 28763770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of PDMS@Fe
    Wang J; Fan Z; Liu Q; Tong Q; Wang B
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superhydrophobic Nanodiamond-Functionalized Melamine Sponge for Oil/Water Separation.
    Wang H; Zhao Q; Zhang K; Wang F; Zhi J; Shan CX
    Langmuir; 2022 Sep; 38(37):11304-11313. PubMed ID: 36070415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A durable superhydrophobic porous polymer coated sponge for efficient separation of immiscible oil/water mixtures and oil-in-water emulsions.
    Gong L; Zhu H; Wu W; Lin D; Yang K
    J Hazard Mater; 2022 Mar; 425():127980. PubMed ID: 34883374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional superhydrophobic adsorbents by mixed-dimensional particles assembly for polymorphic and highly efficient oil-water separation.
    Xu Y; Wang G; Zhu L; Shen L; Zhang Z; Ren T; Zeng Z; Chen T; Xue Q
    J Hazard Mater; 2021 Apr; 407():124374. PubMed ID: 33243637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-Propelled Super-Hydrophobic Sponge Motor and its Application in Oil-Water Separation.
    Sun XD; Yang H; Liang Y; Yan K; Liu L; Gao D; Ma J
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):43205-43215. PubMed ID: 37638771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step, low-cost, mussel-inspired green method to prepare superhydrophobic nanostructured surfaces having durability, efficiency, and wide applicability.
    Zhang J; Zhao J; Qu W; Li X; Wang Z
    J Colloid Interface Sci; 2020 Nov; 580():211-222. PubMed ID: 32683118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational Design of High-Flux, Eco-Friendly, and Versatile Superhydrophobic/Superoleophilic PDMS@ZIF-7/Cu
    Xu X; Li X; Liu G; Wei X; Feng D; Zhang L
    Inorg Chem; 2023 Feb; 62(7):3260-3270. PubMed ID: 36740811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of Superwetting Porous Materials for Ultrafast Separation of Water-in-Oil Emulsions.
    Wang CF; Chen LT
    Langmuir; 2017 Feb; 33(8):1969-1973. PubMed ID: 28145718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneously achieving high-effective oil-water separation and filter media regeneration by facile and highly hydrophobic sand coating.
    Sun Y; Liu Y; Xu B; Chen J; Yuan W; Jiang C; Wang D; Wang H
    Sci Total Environ; 2021 Dec; 800():149488. PubMed ID: 34392226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.