BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32830967)

  • 1. On the Stability and Conformational Dynamics of Cytochrome
    Pabbathi A; Samanta A
    J Phys Chem B; 2020 Sep; 124(37):8132-8140. PubMed ID: 32830967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of alkyl chain substitution of ammonium ionic liquids on the activity and stability of tobacco etch virus protease.
    Attri P; Choi S; Kim M; Shiratani M; Cho AE; Lee W
    Int J Biol Macromol; 2020 Jul; 155():439-446. PubMed ID: 32220643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for the enhanced stability of protein model compounds and peptide backbone unit in ammonium ionic liquids.
    Vasantha T; Attri P; Venkatesu P; Devi RS
    J Phys Chem B; 2012 Oct; 116(39):11968-78. PubMed ID: 22963600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of Ionic Liquid-Assisted Refolding of Denatured Cytochrome c: A Study of Preferential Interactions toward Renaturation.
    Singh UK; Patel R
    Mol Pharm; 2018 Jul; 15(7):2684-2697. PubMed ID: 29767978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implication of Threonine-Based Ionic Liquids on the Structural Stability, Binding and Activity of Cytochrome c.
    Kumar Sahoo D; Devi Tulsiyan K; Jena S; Biswal HS
    Chemphyschem; 2020 Dec; 21(23):2525-2535. PubMed ID: 33022820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The solubility and stability of amino acids in biocompatible ionic liquids.
    Vasantha T; Kumar A; Attri P; Venkatesu P; Devi RS
    Protein Pept Lett; 2014; 21(1):15-24. PubMed ID: 23869906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity and stability of α-chymotrypsin in biocompatible ionic liquids: enzyme refolding by triethyl ammonium acetate.
    Attri P; Venkatesu P; Kumar A
    Phys Chem Chem Phys; 2011 Feb; 13(7):2788-96. PubMed ID: 21152617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of ionic liquid on the conformational dynamics in the native, molten globule, and unfolded states of cytochrome c: a fluorescence correlation spectroscopy study.
    Sen Mojumdar S; Chowdhury R; Chattoraj S; Bhattacharyya K
    J Phys Chem B; 2012 Oct; 116(40):12189-98. PubMed ID: 22989328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of protic ionic liquids on the structure and stability of succinylated Con A.
    Attri P; Venkatesu P
    Int J Biol Macromol; 2012; 51(1-2):119-28. PubMed ID: 22542630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the driving force that rule the stability of lysozyme in alkylammonium-based ionic liquids.
    Bisht M; Kumar A; Venkatesu P
    Int J Biol Macromol; 2015 Nov; 81():1074-81. PubMed ID: 26410812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of reactive oxygen species on the enzyme stability and activity in the presence of ionic liquids.
    Attri P; Choi EH
    PLoS One; 2013; 8(9):e75096. PubMed ID: 24066167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unexpected effects of the alteration of structure and stability of myoglobin and hemoglobin in ammonium-based ionic liquids.
    Jha I; Attri P; Venkatesu P
    Phys Chem Chem Phys; 2014 Mar; 16(12):5514-26. PubMed ID: 24501743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solubility and stability of cytochrome c in hydrated ionic liquids: effect of oxo acid residues and kosmotropicity.
    Fujita K; MacFarlane DR; Forsyth M; Yoshizawa-Fujita M; Murata K; Nakamura N; Ohno H
    Biomacromolecules; 2007 Jul; 8(7):2080-6. PubMed ID: 17580947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FCS study of the structural stability of lysozyme in the presence of morpholinium salts.
    Pabbathi A; Ghosh S; Samanta A
    J Phys Chem B; 2013 Dec; 117(51):16587-93. PubMed ID: 24321037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino-Acid-Based Ionic Liquids for the Improvement in Stability and Activity of Cytochrome c: A Combined Experimental and Molecular Dynamics Study.
    Sahoo DK; Jena S; Tulsiyan KD; Dutta J; Chakrabarty S; Biswal HS
    J Phys Chem B; 2019 Nov; 123(47):10100-10109. PubMed ID: 31682757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic characterization of the biocompatible ionic liquid effects on protein model compounds and their functional groups.
    Attri P; Venkatesu P
    Phys Chem Chem Phys; 2011 Apr; 13(14):6566-75. PubMed ID: 21369576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic liquid-induced all-α to α + β conformational transition in cytochrome c with improved peroxidase activity in aqueous medium.
    Bharmoria P; Trivedi TJ; Pabbathi A; Samanta A; Kumar A
    Phys Chem Chem Phys; 2015 Apr; 17(15):10189-99. PubMed ID: 25798458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term protein packaging in bio-ionic liquids: Improved catalytic activity and enhanced stability of cytochrome C against multiple stresses.
    Bisht M; Mondal D; Pereira MM; Freire MG; Venkatesu P; Coutinho JAP
    Green Chem; 2017 Oct; 19(20):4900-4911. PubMed ID: 30271272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryopreservation of Proteins Using Ionic Liquids: A Case Study of Cytochrome c.
    Takekiyo T; Ishikawa Y; Yoshimura Y
    J Phys Chem B; 2017 Aug; 121(32):7614-7620. PubMed ID: 28708401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endeavour to simplify the frustrated concept of protein-ammonium family ionic liquid interactions.
    Jha I; Venkatesu P
    Phys Chem Chem Phys; 2015 Aug; 17(32):20466-84. PubMed ID: 26154862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.