These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32831358)

  • 1. Pollicott-Ruelle Resonant States and Betti Numbers.
    Küster B; Weich T
    Commun Math Phys; 2020; 378(2):917-941. PubMed ID: 32831358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agrarian and
    Kielak D; Sun B
    Math Ann; 2024; 390(3):3567-3619. PubMed ID: 39363934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leading Pollicott-Ruelle resonances for chaotic area-preserving maps.
    Venegeroles R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):027201. PubMed ID: 18352159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels.
    Jayasumana S; Hartley R; Salzmann M; Li H; Harandi M
    IEEE Trans Pattern Anal Mach Intell; 2015 Dec; 37(12):2464-77. PubMed ID: 26539851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic orbit spectrum in terms of Ruelle-Pollicott resonances.
    Leboeuf P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026204. PubMed ID: 14995545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principal Curves on Riemannian Manifolds.
    Hauberg S
    IEEE Trans Pattern Anal Mach Intell; 2016 Sep; 38(9):1915-21. PubMed ID: 26540674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Betti number ratios as quantitative indices for bone morphometry in three dimensions.
    Teramoto T; Kamiya T; Sakurai T; Kanaya F
    Comput Methods Programs Biomed; 2018 Aug; 162():93-98. PubMed ID: 29903498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantization of classical maps with tunable Ruelle-Pollicott resonances.
    Ostruszka A; Manderfeld C; Zyczkowski K; Haake F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056201. PubMed ID: 14682865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leading pollicott-ruelle resonances and transport in area-preserving maps.
    Venegeroles R
    Phys Rev Lett; 2007 Jul; 99(1):014101. PubMed ID: 17678153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Holomorphic Sectional Curvature of Complex Finsler Manifolds.
    Wan X
    J Geom Anal; 2019; 29(1):194-216. PubMed ID: 30686908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum fingerprints of classical ruelle-pollicott resonances.
    Pance K; Lu W; Sridhar S
    Phys Rev Lett; 2000 Sep; 85(13):2737-40. PubMed ID: 10991221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Counting Salem Numbers of Arithmetic Hyperbolic 3-Orbifolds.
    Belolipetsky M; Lalín M; Murillo PGP; Thompson L
    Bull Braz Math Soc; 2022; 53(2):553-569. PubMed ID: 35646107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. D'Atri spaces and the total scalar curvature of hemispheres, tubes and cylinders.
    Csikós B; Elnashar A; Horváth M
    Rev Mat Complut; 2023; 36(3):887-898. PubMed ID: 37663240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locating Pollicott-Ruelle resonances in chaotic dynamical systems: a class of numerical schemes.
    Florido R; Martín-González JM; Gomez Llorente JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046208. PubMed ID: 12443300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EVOLUTIONARY DE RHAM-HODGE METHOD.
    Chen J; Zhao R; Tong Y; Wei GW
    Discrete Continuous Dyn Syst Ser B; 2021 Jul; 26(7):3785-3821. PubMed ID: 34675756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parametric dependence of the Pollicott-Ruelle resonances for sawtooth maps.
    Sano MM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046211. PubMed ID: 12443303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sharp Cheeger-Buser Type Inequalities in
    De Ponti N; Mondino A
    J Geom Anal; 2021; 31(3):2416-2438. PubMed ID: 33746464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning by natural gradient on noncompact matrix-type pseudo-Riemannian manifolds.
    Fiori S
    IEEE Trans Neural Netw; 2010 May; 21(5):841-52. PubMed ID: 20236880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topology driven modeling: the IS metaphor.
    Merelli E; Pettini M; Rasetti M
    Nat Comput; 2015; 14(3):421-430. PubMed ID: 26300712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape Classification Using Wasserstein Distance for Brain Morphometry Analysis.
    Su Z; Zeng W; Wang Y; Lu ZL; Gu X
    Inf Process Med Imaging; 2015; 24():411-23. PubMed ID: 26221691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.