These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32831462)

  • 1. Comparison of satellite reflectance algorithms for estimating turbidity and cyanobacterial concentrations in productive freshwaters using hyperspectral aircraft imagery and dense coincident surface observations.
    Beck R; Xu M; Zhan S; Johansen R; Liu H; Tong S; Yang B; Shu S; Wu Q; Wang S; Berling K; Murray A; Emery E; Reif M; Harwood J; Young J; Nietch C; Macke D; Martin M; Stillings G; Stumpf R; Su H; Ye Z; Huang Y
    J Great Lakes Res; 2019 Jun; 45(3):413-433. PubMed ID: 32831462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes using airborne hyperspectral imagery and dense surface observations.
    Johansen R; Beck R; Nowosad J; Nietch C; Xu M; Shu S; Yang B; Liu H; Emery E; Reif M; Harwood J; Young J; Macke D; Martin M; Stillings G; Stumpf R; Su H
    Harmful Algae; 2018 Jun; 76():35-46. PubMed ID: 29887203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyanobacterial pigment concentrations in inland waters: Novel semi-analytical algorithms for multi- and hyperspectral remote sensing data.
    Dev PJ; Sukenik A; Mishra DR; Ostrovsky I
    Sci Total Environ; 2022 Jan; 805():150423. PubMed ID: 34818810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring the vertical distribution of HABs using hyperspectral imagery and deep learning models.
    Hong SM; Baek SS; Yun D; Kwon YH; Duan H; Pyo J; Cho KH
    Sci Total Environ; 2021 Nov; 794():148592. PubMed ID: 34217087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote sensing of the cyanobacteria life cycle: A mesocosm temporal assessment of a Microcystis sp. bloom using coincident unmanned aircraft system (UAS) hyperspectral imagery and ground sampling efforts.
    Pokrzywinski K; Johansen R; Reif M; Bourne S; Hammond S; Fernando B
    Harmful Algae; 2022 Aug; 117():102268. PubMed ID: 35944951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complementary water quality observations from high and medium resolution Sentinel sensors by aligning chlorophyll-
    Warren MA; Simis SGH; Selmes N
    Remote Sens Environ; 2021 Nov; 265():112651. PubMed ID: 34732943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ground-based remote sensing provides alternative to satellites for monitoring cyanobacteria in small lakes.
    Cook KV; Beyer JE; Xiao X; Hambright KD
    Water Res; 2023 Aug; 242():120076. PubMed ID: 37352675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote sensing of cyanobacterial blooms in inland waters: present knowledge and future challenges.
    Shi K; Zhang Y; Qin B; Zhou B
    Sci Bull (Beijing); 2019 Oct; 64(20):1540-1556. PubMed ID: 36659563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of chlorophyll a content in inland turbidity waters using WorldView-2 imagery: a case study of the Guanting Reservoir, Beijing, China.
    Wang X; Gong Z; Pu R
    Environ Monit Assess; 2018 Sep; 190(10):620. PubMed ID: 30269190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach to quantify chlorophyll-a over inland water targets based on multi-source remote sensing data.
    Wang J; Chen X
    Sci Total Environ; 2024 Jan; 906():167631. PubMed ID: 37806589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties.
    Al Shehhi MR; Gherboudj I; Ghedira H
    J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring of wetland turbidity using multi-temporal Landsat-8 and Landsat-9 satellite imagery in the Bisalpur wetland, Rajasthan, India.
    Singh R; Saritha V; Pande CB
    Environ Res; 2024 Jan; 241():117638. PubMed ID: 37972812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the effectiveness of Landsat 8 chlorophyll a retrieval algorithms for regional freshwater monitoring.
    Boucher J; Weathers KC; Norouzi H; Steele B
    Ecol Appl; 2018 Jun; 28(4):1044-1054. PubMed ID: 29847690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Analysis on Diurnal Variation of Chlorophyll-a Concentration of Taihu Lake Based on Optical Classification with GOCI Data].
    Bao Y; Tian QJ; Chen M; Lü CG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2562-7. PubMed ID: 30074364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote estimation of phycocyanin (PC) for inland waters coupled with YSI PC fluorescence probe.
    Song K; Li L; Tedesco L; Clercin N; Hall B; Li S; Shi K; Liu D; Sun Y
    Environ Sci Pollut Res Int; 2013 Aug; 20(8):5330-40. PubMed ID: 23397212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing.
    Urquhart EA; Schaeffer BA; Stumpf RP; Loftin KA; Werdell PJ
    Harmful Algae; 2017 Jul; 67():144-152. PubMed ID: 28755717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of Cyanobacterial Bloom Magnitude using Satellite Remote Sensing.
    Mishra S; Stumpf RP; Schaeffer BA; Werdell PJ; Loftin KA; Meredith A
    Sci Rep; 2019 Dec; 9(1):18310. PubMed ID: 31797884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial and temporal patterns in the seasonal distribution of toxic cyanobacteria in Western Lake Erie from 2002-2014.
    Wynne TT; Stumpf RP
    Toxins (Basel); 2015 May; 7(5):1649-63. PubMed ID: 25985390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake.
    Dörnhöfer K; Klinger P; Heege T; Oppelt N
    Sci Total Environ; 2018 Jan; 612():1200-1214. PubMed ID: 28892864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based efficient drone-borne sensing of cyanobacterial blooms using a clique-based feature extraction approach.
    Shin J; Lee G; Kim T; Cho KH; Hong SM; Kwon DH; Pyo J; Cha Y
    Sci Total Environ; 2024 Feb; 912():169540. PubMed ID: 38145679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.