These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32831462)

  • 21. High resolution chlorophyll-
    Levi EE; Jeppesen E; Nejstgaard JC; Davidson TA
    Open Res Eur; 2024; 4():69. PubMed ID: 38915372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multispectral remote sensing of harmful algal blooms in Lake Champlain, USA.
    Isenstein EM; Trescott A; Park MH
    Water Environ Res; 2014 Dec; 86(12):2271-8. PubMed ID: 25654929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A harmful algal bloom of Karenia brevis in the northeastern Gulf of Mexico as revealed by MODIS and VIIRS: a comparison.
    Hu C; Barnes BB; Qi L; Corcoran AA
    Sensors (Basel); 2015 Jan; 15(2):2873-87. PubMed ID: 25635412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Remote Sensing Phenology of Antarctic Green and Red Snow Algae Using WorldView Satellites.
    Gray A; Krolikowski M; Fretwell P; Convey P; Peck LS; Mendelova M; Smith AG; Davey MP
    Front Plant Sci; 2021; 12():671981. PubMed ID: 34226827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing cyanobacterial frequency and abundance at surface waters near drinking water intakes across the United States.
    Coffer MM; Schaeffer BA; Foreman K; Porteous A; Loftin KA; Stumpf RP; Werdell PJ; Urquhart E; Albert RJ; Darling JA
    Water Res; 2021 Aug; 201():117377. PubMed ID: 34218089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new approach for the estimation of phytoplankton cell counts associated with algal blooms.
    Nazeer M; Wong MS; Nichol JE
    Sci Total Environ; 2017 Jul; 590-591():125-138. PubMed ID: 28283297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Reconstruction of Water Hyperspectral Remote Sensing Reflectance Based on Sparse Representation and Its Application].
    Li Y; Li YM; Guo YL; Zhang YL; Zhang YB; Hu YD; Xia Z
    Huan Jing Ke Xue; 2019 Jan; 40(1):200-210. PubMed ID: 30628276
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimation of cyanobacteria biovolume in water reservoirs by MERIS sensor.
    Medina-Cobo M; Domínguez JA; Quesada A; de Hoyos C
    Water Res; 2014 Oct; 63():10-20. PubMed ID: 24971813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inland harmful cyanobacterial bloom prediction in the eutrophic Tri An Reservoir using satellite band ratio and machine learning approaches.
    Nguyen HQ; Ha NT; Pham TL
    Environ Sci Pollut Res Int; 2020 Mar; 27(9):9135-9151. PubMed ID: 31916153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ten-year survey of cyanobacterial blooms in Ohio's waterbodies using satellite remote sensing.
    Gorham T; Jia Y; Shum CK; Lee J
    Harmful Algae; 2017 Jun; 66():13-19. PubMed ID: 28602249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry.
    Vanhellemont Q
    Opt Express; 2020 Sep; 28(20):29948-29965. PubMed ID: 33114883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predictive performance of regression models to estimate Chlorophyll-a concentration based on Landsat imagery.
    Matus-Hernández MÁ; Hernández-Saavedra NY; Martínez-Rincón RO
    PLoS One; 2018; 13(10):e0205682. PubMed ID: 30312339
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Satellite remote sensing to assess cyanobacterial bloom frequency across the United States at multiple spatial scales.
    Coffer MM; Schaeffer BA; Salls WB; Urquhart E; Loftin KA; Stumpf RP; Werdell PJ; Darling JA
    Ecol Indic; 2021 Sep; 128():1-107822. PubMed ID: 35558093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of hyperspectral indices for chlorophyll-a concentration estimation in Tangxun Lake (Wuhan, China).
    Huang Y; Jiang D; Zhuang D; Fu J
    Int J Environ Res Public Health; 2010 Jun; 7(6):2437-51. PubMed ID: 20644681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Multiscale Mapping Assessment of Lake Champlain Cyanobacterial Harmful Algal Blooms.
    Torbick N; Corbiere M
    Int J Environ Res Public Health; 2015 Sep; 12(9):11560-78. PubMed ID: 26389930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria.
    Stumpf RP; Davis TW; Wynne TT; Graham JL; Loftin KA; Johengen TH; Gossiaux D; Palladino D; Burtner A
    Harmful Algae; 2016 Apr; 54():160-173. PubMed ID: 28073474
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of iCOR and Rayleigh atmospheric correction methods on Sentinel-3 OLCI images for a shallow eutrophic reservoir.
    Katsoulis-Dimitriou S; Lefkaditis M; Barmpagiannakos S; Kormas KA; Kyparissis A
    PeerJ; 2022; 10():e14311. PubMed ID: 36353601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Remote Sensing of Chlorophyll-a Concentrations in Lake Hongze Using Long Time Series MERIS Observations].
    Liu G; Li YM; Lü H; Mu M; Lei SH; Wen S; Bi S; Ding XL
    Huan Jing Ke Xue; 2017 Sep; 38(9):3645-3656. PubMed ID: 29965243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hyperspectral sensing for turbid water quality monitoring in freshwater rivers: Empirical relationship between reflectance and turbidity and total solids.
    Wu JL; Ho CR; Huang CC; Srivastav AL; Tzeng JH; Lin YT
    Sensors (Basel); 2014 Nov; 14(12):22670-88. PubMed ID: 25460816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of phytoplankton abundances (Chlorophyll-a) in the optically complex inland water - The Baltic Sea.
    Zhang D; Lavender S; Muller JP; Walton D; Karlson B; Kronsell J
    Sci Total Environ; 2017 Dec; 601-602():1060-1074. PubMed ID: 28599362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.