BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 32831520)

  • 1. Views on GWAS statistical analysis.
    Cao X; Xing L; He H; Zhang X
    Bioinformation; 2020; 16(5):393-397. PubMed ID: 32831520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel linkage disequilibrium clustering algorithm identifies new lupus genes on meta-analysis of GWAS datasets.
    Saeed M
    Immunogenetics; 2017 May; 69(5):295-302. PubMed ID: 28246883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overview of Statistical Methods for Genome-Wide Association Studies (GWAS).
    Hayes B
    Methods Mol Biol; 2013; 1019():149-69. PubMed ID: 23756890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting Linkage Disequilibrium for Ultrahigh-Dimensional Genome-Wide Data with an Integrated Statistical Approach.
    Carlsen M; Fu G; Bushman S; Corcoran C
    Genetics; 2016 Feb; 202(2):411-26. PubMed ID: 26661113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PCA-Based Multiple-Trait GWAS Analysis: A Powerful Model for Exploring Pleiotropy.
    Zhang W; Gao X; Shi X; Zhu B; Wang Z; Gao H; Xu L; Zhang L; Li J; Chen Y
    Animals (Basel); 2018 Dec; 8(12):. PubMed ID: 30562943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weighting sequence variants based on their annotation increases the power of genome-wide association studies in dairy cattle.
    Cai Z; Guldbrandtsen B; Lund MS; Sahana G
    Genet Sel Evol; 2019 May; 51(1):20. PubMed ID: 31077144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach.
    Guo B; Wu B
    Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Empirical Comparisons of Different Statistical Models To Identify and Validate Kernel Row Number-Associated Variants from Structured Multi-parent Mapping Populations of Maize.
    Yang J; Yeh CE; Ramamurthy RK; Qi X; Fernando RL; Dekkers JCM; Garrick DJ; Nettleton D; Schnable PS
    G3 (Bethesda); 2018 Nov; 8(11):3567-3575. PubMed ID: 30213868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide Association Analyses in the Model Rhizobium
    Epstein B; Abou-Shanab RAI; Shamseldin A; Taylor MR; Guhlin J; Burghardt LT; Nelson M; Sadowsky MJ; Tiffin P
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30355664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing power and precision of within-breed and multibreed genome-wide association studies of production traits using whole-genome sequence data for 5 French and Danish dairy cattle breeds.
    van den Berg I; Boichard D; Lund MS
    J Dairy Sci; 2016 Nov; 99(11):8932-8945. PubMed ID: 27568046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selecting Closely-Linked SNPs Based on Local Epistatic Effects for Haplotype Construction Improves Power of Association Mapping.
    Liu F; Schmidt RH; Reif JC; Jiang Y
    G3 (Bethesda); 2019 Dec; 9(12):4115-4126. PubMed ID: 31604824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limits on the reproducibility of marker associations with southern leaf blight resistance in the maize nested association mapping population.
    Bian Y; Yang Q; Balint-Kurti PJ; Wisser RJ; Holland JB
    BMC Genomics; 2014 Dec; 15(1):1068. PubMed ID: 25475173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multiple regression method for genomewide association studies using only linkage information.
    Mei B; Wang Z
    J Genet; 2018 Jun; 97(2):477-482. PubMed ID: 29932068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A powerful statistical framework for generalization testing in GWAS, with application to the HCHS/SOL.
    Sofer T; Heller R; Bogomolov M; Avery CL; Graff M; North KE; Reiner AP; Thornton TA; Rice K; Benjamini Y; Laurie CC; Kerr KF
    Genet Epidemiol; 2017 Apr; 41(3):251-258. PubMed ID: 28090672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L) diversity panel newly designed for association studies.
    Nicolas SD; Péros JP; Lacombe T; Launay A; Le Paslier MC; Bérard A; Mangin B; Valière S; Martins F; Le Cunff L; Laucou V; Bacilieri R; Dereeper A; Chatelet P; This P; Doligez A
    BMC Plant Biol; 2016 Mar; 16():74. PubMed ID: 27005772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning the optimal scale for GWAS through hierarchical SNP aggregation.
    Guinot F; Szafranski M; Ambroise C; Samson F
    BMC Bioinformatics; 2018 Nov; 19(1):459. PubMed ID: 30497371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translating genome wide association study results to associations among common diseases: in silico study with an electronic medical record.
    Anand V; Rosenman MB; Downs SM
    Int J Med Inform; 2013 Sep; 82(9):864-74. PubMed ID: 23743324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple testing in genome-wide association studies via hidden Markov models.
    Wei Z; Sun W; Wang K; Hakonarson H
    Bioinformatics; 2009 Nov; 25(21):2802-8. PubMed ID: 19654115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What has GWAS done for HLA and disease associations?
    Kennedy AE; Ozbek U; Dorak MT
    Int J Immunogenet; 2017 Oct; 44(5):195-211. PubMed ID: 28877428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.