BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32831573)

  • 1. Synthesis of Nano-Scale Biopolymer Particles from Legume Protein Isolates and Carrageenan.
    Koralegedara ID; Hettiarachchi CA; Prasantha BDR; Wimalasiri KMS
    Food Technol Biotechnol; 2020 Jun; 58(2):214-222. PubMed ID: 32831573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and morphological characterization of biopolymer particles formed by electrostatic complexation of heat treated lactoferrin and anionic polysaccharides.
    Peinado I; Lesmes U; Andrés A; McClements JD
    Langmuir; 2010 Jun; 26(12):9827-34. PubMed ID: 20229991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core-shell biopolymer nanoparticles produced by electrostatic deposition of beet pectin onto heat-denatured beta-lactoglobulin aggregates.
    Santipanichwong R; Suphantharika M; Weiss J; McClements DJ
    J Food Sci; 2008 Aug; 73(6):N23-30. PubMed ID: 19241582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biopolymer nanoparticles from heat-treated electrostatic protein-polysaccharide complexes: factors affecting particle characteristics.
    Jones OG; McClements DJ
    J Food Sci; 2010 Mar; 75(2):N36-43. PubMed ID: 20492252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-neutral polysaccharide nano- and micro-biopolymer complexes fabricated by lactoferrin and oat β-glucan: Structural characteristics and molecular interaction mechanisms.
    Yang W; Deng C; Xu L; Jin W; Zeng J; Li B; Gao Y
    Food Res Int; 2020 Jun; 132():109111. PubMed ID: 32331685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein-polysaccharide complexes.
    Jones OG; McClements DJ
    Adv Colloid Interface Sci; 2011 Sep; 167(1-2):49-62. PubMed ID: 21094486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of hydrogel particles by thermal treatment of beta-lactoglobulin-chitosan complexes.
    Hong YH; McClements DJ
    J Agric Food Chem; 2007 Jul; 55(14):5653-60. PubMed ID: 17567036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Wide Analysis of Late Embryogenesis Abundant Protein Gene Family in
    Singh CM; Kumar M; Pratap A; Tripathi A; Singh S; Mishra A; Kumar H; Nair RM; Singh NP
    Front Plant Sci; 2022; 13():843107. PubMed ID: 35392521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of charge density of polysaccharides on self-assembled intragastric gelation of whey protein/polysaccharide under simulated gastric conditions.
    Zhang S; Zhang Z; Vardhanabhuti B
    Food Funct; 2014 Aug; 5(8):1829-38. PubMed ID: 24920131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Disease of Mung Bean, Phytophthora Stem Rot Caused by a New Forma Specialis of
    Sun F; Sun S; Yang Y; Zhou B; Duan C; Shan W; Zhu Z
    Plant Dis; 2021 Aug; 105(8):2160-2168. PubMed ID: 33315483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Biopolymer Particles: Design, Fabrication, and Applications.
    Jones OG; McClements DJ
    Compr Rev Food Sci Food Saf; 2010 Jul; 9(4):374-397. PubMed ID: 33467840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foaming properties are improved by interactions between brewer's spent grain proteins and carrageenans in aqueous solution.
    Proaño JL; Pérez AA; Drago SR
    J Sci Food Agric; 2023 Mar; 103(5):2585-2592. PubMed ID: 36303517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chromosome-scale assembly of the black gram (Vigna mungo) genome.
    Pootakham W; Nawae W; Naktang C; Sonthirod C; Yoocha T; Kongkachana W; Sangsrakru D; Jomchai N; U-Thoomporn S; Somta P; Laosatit K; Tangphatsornruang S
    Mol Ecol Resour; 2021 Jan; 21(1):238-250. PubMed ID: 32794377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-allergic activity of mung bean (Vigna radiata (L.) Wilczek) protein hydrolysates produced by enzymatic hydrolysis using non-gastrointestinal and gastrointestinal enzymes.
    Budseekoad S; Takahashi Yupanqui C; Alashi AM; Aluko RE; Youravong W
    J Food Biochem; 2019 Jan; 43(1):e12674. PubMed ID: 31353487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of protein-polysaccharide nanoparticle fabrication methods: impact of biopolymer complexation before or after particle formation.
    Jones OG; Decker EA; McClements DJ
    J Colloid Interface Sci; 2010 Apr; 344(1):21-9. PubMed ID: 20045114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing delivery systems for cationic biopolymers: competitive interactions of cationic polylysine with anionic κ-carrageenan and pectin.
    Lopez-Pena CL; McClements DJ
    Food Chem; 2014 Jun; 153():9-14. PubMed ID: 24491693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixing behaviour of WPI-pectin-complexes in meat dispersions: impact of biopolymer ratios.
    Zeeb B; Schöck V; Schmid N; Majer L; Herrmann K; Hinrichs J; Weiss J
    Food Funct; 2017 Jan; 8(1):333-340. PubMed ID: 28059405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biopolymers Hybrid Particles Used in Dentistry.
    Chen IH; Lee TM; Huang CL
    Gels; 2021 Mar; 7(1):. PubMed ID: 33809903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis of OSCA gene family members in Vigna radiata and their involvement in the osmotic response.
    Yin L; Zhang M; Wu R; Chen X; Liu F; Xing B
    BMC Plant Biol; 2021 Sep; 21(1):408. PubMed ID: 34493199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hydrophobic modification of kappa carrageenan microgel particles for the stabilisation of foams.
    Ellis AL; Mills TB; Norton IT; Norton-Welch AB
    J Colloid Interface Sci; 2019 Mar; 538():165-173. PubMed ID: 30504056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.