These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32832020)

  • 1. From Bacteria to Cancer: A Benzothiazole-Based DNA Gyrase B Inhibitor Redesigned for Hsp90 C-Terminal Inhibition.
    Pugh KW; Zhang Z; Wang J; Xu X; Munthali V; Zuo A; Blagg BSJ
    ACS Med Chem Lett; 2020 Aug; 11(8):1535-1538. PubMed ID: 32832020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-Activity Relationships of Benzothiazole-Based Hsp90 C-Terminal-Domain Inhibitors.
    Dernovšek J; Zajec Ž; Durcik M; Mašič LP; Gobec M; Zidar N; Tomašič T
    Pharmaceutics; 2021 Aug; 13(8):. PubMed ID: 34452244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novobiocin: redesigning a DNA gyrase inhibitor for selective inhibition of hsp90.
    Burlison JA; Neckers L; Smith AB; Maxwell A; Blagg BS
    J Am Chem Soc; 2006 Dec; 128(48):15529-36. PubMed ID: 17132020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novobiocin Analogs as Potential Anticancer Agents.
    Dlugosz A; Janecka A
    Mini Rev Med Chem; 2017; 17(9):728-733. PubMed ID: 28019639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triazole Containing Novobiocin and Biphenyl Amides as Hsp90 C-Terminal Inhibitors.
    Zhao J; Zhao H; Hall JA; Brown D; Brandes E; Bazzill J; Grogan PT; Subramanian C; Vielhauer G; Cohen MS; Blagg BS
    Medchemcomm; 2014 Sep; 5(9):1317-1323. PubMed ID: 25328661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, synthesis, and biological evaluation of ring-constrained novobiocin analogues as hsp90 C-terminal inhibitors.
    Garg G; Zhao H; Blagg BS
    ACS Med Chem Lett; 2015 Feb; 6(2):204-9. PubMed ID: 25699150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cucurbitacin D Is a Disruptor of the HSP90 Chaperone Machinery.
    Hall JA; Seedarala S; Rice N; Kopel L; Halaweish F; Blagg BS
    J Nat Prod; 2015 Apr; 78(4):873-9. PubMed ID: 25756299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hsp90 inhibitors identified from a library of novobiocin analogues.
    Yu XM; Shen G; Neckers L; Blake H; Holzbeierlein J; Cronk B; Blagg BS
    J Am Chem Soc; 2005 Sep; 127(37):12778-9. PubMed ID: 16159253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Class of Hsp90 C-Terminal Modulators Have Pre-Clinical Efficacy in Prostate Tumor Cells Without Induction of a Heat Shock Response.
    Armstrong HK; Koay YC; Irani S; Das R; Nassar ZD; ; Selth LA; Centenera MM; McAlpine SR; Butler LM
    Prostate; 2016 Dec; 76(16):1546-1559. PubMed ID: 27526951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of heat shock protein 90 chaperone function through binding of a novobiocin analog KU-32.
    Chatterjee BK; Jayaraj A; Kumar V; Blagg B; Davis RE; Jayaram B; Deep S; Chaudhuri TK
    J Biol Chem; 2019 Apr; 294(16):6450-6467. PubMed ID: 30792306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone.
    Marcu MG; Chadli A; Bouhouche I; Catelli M; Neckers LM
    J Biol Chem; 2000 Nov; 275(47):37181-6. PubMed ID: 10945979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The design, synthesis, and evaluation of coumarin ring derivatives of the novobiocin scaffold that exhibit antiproliferative activity.
    Donnelly AC; Mays JR; Burlison JA; Nelson JT; Vielhauer G; Holzbeierlein J; Blagg BS
    J Org Chem; 2008 Nov; 73(22):8901-20. PubMed ID: 18939877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a new scaffold for hsp90 C-terminal inhibition.
    Zhao H; Moroni E; Colombo G; Blagg BS
    ACS Med Chem Lett; 2014 Jan; 5(1):84-8. PubMed ID: 24900777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and biological evaluation of novobiocin analogues as potential heat shock protein 90 inhibitors.
    Gunaherath GM; Marron MT; Wijeratne EM; Whitesell L; Gunatilaka AA
    Bioorg Med Chem; 2013 Sep; 21(17):5118-29. PubMed ID: 23859777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hiding in plain sight: Optimizing topoisomerase IIα inhibitors into Hsp90β selective binders.
    Dernovšek J; Goričan T; Gedgaudas M; Zajec Ž; Urbančič D; Jug A; Skok Ž; Sturtzel C; Distel M; Grdadolnik SG; Babu K; Panchamatia A; Stachowski TR; Fischer M; Ilaš J; Zubrienė A; Matulis D; Zidar N; Tomašič T
    Eur J Med Chem; 2024 Oct; 280():116934. PubMed ID: 39388906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anticancer Inhibitors of Hsp90 Function: Beyond the Usual Suspects.
    Garg G; Khandelwal A; Blagg BS
    Adv Cancer Res; 2016; 129():51-88. PubMed ID: 26916001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Investigation of Hsp90C-Terminal Inhibitors Containing Amide Bioisosteres.
    Amatya E; Subramanian C; Long R; McNamara K; Cohen MS; Blagg BSJ
    ChemMedChem; 2024 Aug; ():e202400418. PubMed ID: 39153203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X66, a novel N-terminal heat shock protein 90 inhibitor, exerts antitumor effects without induction of heat shock response.
    Zhao Z; Zhu J; Quan H; Wang G; Li B; Zhu W; Xie C; Lou L
    Oncotarget; 2016 May; 7(20):29648-63. PubMed ID: 27105490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel 1,6-naphthyridin-2(1H)-ones as potential anticancer agents targeting Hsp90.
    Montoir D; Barillé-Nion S; Tonnerre A; Juin P; Duflos M; Bazin MA
    Eur J Med Chem; 2016 Aug; 119():17-33. PubMed ID: 27153346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-terminal modulators of heat shock protein of 90 kDa (HSP90): State of development and modes of action.
    Bickel D; Gohlke H
    Bioorg Med Chem; 2019 Nov; 27(21):115080. PubMed ID: 31519378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.