BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32832064)

  • 1. Total cost of carbon capture and storage implemented at a regional scale: northeastern and midwestern United States.
    Schmelz WJ; Hochman G; Miller KG
    Interface Focus; 2020 Oct; 10(5):20190065. PubMed ID: 32832064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Policy-Driven Potential for Deploying Carbon Capture and Sequestration in a Fossil-Rich Power Sector.
    Dindi A; Coddington K; Garofalo JF; Wu W; Zhai H
    Environ Sci Technol; 2022 Jul; 56(14):9872-9881. PubMed ID: 35785993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Baseload coal investment decisions under uncertain carbon legislation.
    Bergerson JA; Lave LB
    Environ Sci Technol; 2007 May; 41(10):3431-6. PubMed ID: 17547159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategic Carbon Dioxide Infrastructure to Achieve a Low-Carbon Power Sector in the Midwestern and South-Central United States.
    Tao Y; Edwards RWJ; Mauzerall DL; Celia MA
    Environ Sci Technol; 2021 Nov; 55(22):15013-15024. PubMed ID: 34714051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the US EPA's determination of the role for CO2 capture and storage in new fossil fuel-fired power plants.
    Clark VR; Herzog HJ
    Environ Sci Technol; 2014 Jul; 48(14):7723-9. PubMed ID: 24960207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of potential, cost, and environmental benefits of CCS-EWR technology for coal-fired power plants in Yellow River Basin of China.
    Xu M; Zhang X; Shen S; Wei S; Fan JL
    J Environ Manage; 2021 Aug; 292():112717. PubMed ID: 34015611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Could congressionally mandated incentives lead to deployment of large-scale CO
    Edmonds J; Nichols C; Adamantiades M; Bistline J; Huster J; Iyer G; Johnson N; Patel P; Showalter S; Victor N; Waldhoff S; Wise M; Wood F
    Energy Policy; 2020; 146():. PubMed ID: 35444362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The environmental and economic sustainability of carbon capture and storage.
    Hardisty PE; Sivapalan M; Brooks P
    Int J Environ Res Public Health; 2011 May; 8(5):1460-77. PubMed ID: 21655130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cost Analysis of Carbon Capture and Sequestration from U.S. Natural Gas-Fired Power Plants.
    Psarras P; He J; Pilorgé H; McQueen N; Jensen-Fellows A; Kian K; Wilcox J
    Environ Sci Technol; 2020 May; 54(10):6272-6280. PubMed ID: 32329614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opportunities for Decarbonizing Existing U.S. Coal-Fired Power Plants via CO2 Capture, Utilization and Storage.
    Zhai H; Ou Y; Rubin ES
    Environ Sci Technol; 2015 Jul; 49(13):7571-9. PubMed ID: 26023722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An optimization model for carbon capture & storage/utilization vs. carbon trading: A case study of fossil-fired power plants in Turkey.
    Ağralı S; Üçtuğ FG; Türkmen BA
    J Environ Manage; 2018 Jun; 215():305-315. PubMed ID: 29574208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fossil-Fuel Options for Power Sector Net-Zero Emissions with Sequestration Tax Credits.
    Anderson JJ; Rode DC; Zhai H; Fischbeck PS
    Environ Sci Technol; 2022 Aug; 56(16):11162-11171. PubMed ID: 35926127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. National-level infrastructure and economic effects of switchgrass cofiring with coal in existing power plants for carbon mitigation.
    Morrow WR; Griffin WM; Matthews HS
    Environ Sci Technol; 2008 May; 42(10):3501-7. PubMed ID: 18546680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term energy and climate implications of carbon capture and storage deployment strategies in the US coal-fired electricity fleet.
    Sathre R; Masanet E
    Environ Sci Technol; 2012 Sep; 46(17):9768-76. PubMed ID: 22857130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Siting is a constraint to realize environmental benefits from carbon capture and storage.
    Sekar A; Williams E; Chester M
    Environ Sci Technol; 2014 Oct; 48(19):11705-12. PubMed ID: 25187199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is Carbon Capture and Storage (CCS) Really So Expensive? An Analysis of Cascading Costs and CO
    Subraveti SG; Rodríguez Angel E; Ramírez A; Roussanaly S
    Environ Sci Technol; 2023 Feb; 57(6):2595-2601. PubMed ID: 36731169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opportunity for offshore wind to reduce future demand for coal-fired power plants in China with consequent savings in emissions of CO2.
    Lu X; McElroy MB; Chen X; Kang C
    Environ Sci Technol; 2014 Dec; 48(24):14764-71. PubMed ID: 25409413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.
    White CM; Strazisar BR; Granite EJ; Hoffman JS; Pennline HW;
    J Air Waste Manag Assoc; 2003 Jun; 53(6):645-715. PubMed ID: 12828330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of carbon markets and subsidies on carbon capture and storage retrofitting of existing coal-fired units in China.
    Li K; Yang J; Wei Y
    J Environ Manage; 2023 Jan; 326(Pt B):116824. PubMed ID: 36442336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-Resolved Cost Analysis of Natural Gas Power Plant Conversion to Bioenergy with Carbon Capture and Storage to Support Net-Zero Emissions.
    Sproul E; Barlow J; Quinn JC
    Environ Sci Technol; 2020 Dec; 54(23):15338-15346. PubMed ID: 33183006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.