These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 32832238)
61. Sequential structural and functional change in geographic atrophy on multimodal imaging in non-exudative age-related macular degeneration. Lee JH; Ahn J; Shin JY Graefes Arch Clin Exp Ophthalmol; 2023 Aug; 261(8):2199-2207. PubMed ID: 36877299 [TBL] [Abstract][Full Text] [Related]
62. REGRESSION OF TYPE 2 NEOVASCULARIZATION INTO A TYPE 1 PATTERN AFTER INTRAVITREAL ANTI-VASCULAR ENDOTHELIAL GROWTH FACTOR THERAPY FOR NEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Dolz-Marco R; Phasukkijwatana N; Sarraf D; Freund KB Retina; 2017 Feb; 37(2):222-233. PubMed ID: 27627752 [TBL] [Abstract][Full Text] [Related]
63. Prognostication in Stargardt Disease Using Fundus Autofluorescence: Improving Patient Care. Daich Varela M; Laich Y; Hashem SA; Mahroo OA; Webster AR; Michaelides M Ophthalmology; 2023 Nov; 130(11):1182-1190. PubMed ID: 37331482 [TBL] [Abstract][Full Text] [Related]
64. Morpho-functional analysis of Stargardt Disease for reading. Sasso P; Scupola A; Silvestri V; Amore FM; Abed E; Calandriello L; Grimaldi G; Caporossi A Can J Ophthalmol; 2017 Jun; 52(3):287-294. PubMed ID: 28576211 [TBL] [Abstract][Full Text] [Related]
65. The Progression of Geographic Atrophy Secondary to Age-Related Macular Degeneration. Fleckenstein M; Mitchell P; Freund KB; Sadda S; Holz FG; Brittain C; Henry EC; Ferrara D Ophthalmology; 2018 Mar; 125(3):369-390. PubMed ID: 29110945 [TBL] [Abstract][Full Text] [Related]
66. Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration. Kellner U; Kellner S; Weinitz S Retina; 2010 Jan; 30(1):6-15. PubMed ID: 20066766 [TBL] [Abstract][Full Text] [Related]
67. Geographic atrophy progression in eyes with age-related macular degeneration: role of fundus autofluorescence patterns, fellow eye and baseline atrophy area. Batıoğlu F; Gedik Oğuz Y; Demirel S; Ozmert E Ophthalmic Res; 2014; 52(2):53-9. PubMed ID: 24993093 [TBL] [Abstract][Full Text] [Related]
68. Near-infrared and short-wave autofluorescence in ocular specimens. Oguchi Y; Sekiryu T; Takasumi M; Hashimoto Y; Furuta M Jpn J Ophthalmol; 2018 Sep; 62(5):605-613. PubMed ID: 30073488 [TBL] [Abstract][Full Text] [Related]
69. Centrifugal expansion of fundus autofluorescence patterns in Stargardt disease over time. Cukras CA; Wong WT; Caruso R; Cunningham D; Zein W; Sieving PA Arch Ophthalmol; 2012 Feb; 130(2):171-9. PubMed ID: 21987580 [TBL] [Abstract][Full Text] [Related]
70. Mutations in GPR143/OA1 and ABCA4 Inform Interpretations of Short-Wavelength and Near-Infrared Fundus Autofluorescence. Paavo M; Zhao J; Kim HJ; Lee W; Zernant J; Cai C; Allikmets R; Tsang SH; Sparrow JR Invest Ophthalmol Vis Sci; 2018 May; 59(6):2459-2469. PubMed ID: 29847651 [TBL] [Abstract][Full Text] [Related]
71. Lipofuscin-associated photo-oxidative stress during fundus autofluorescence imaging. Teussink MM; Lambertus S; de Mul FF; Rozanowska MB; Hoyng CB; Klevering BJ; Theelen T PLoS One; 2017; 12(2):e0172635. PubMed ID: 28235055 [TBL] [Abstract][Full Text] [Related]
72. Progression of retinal pigment epithelial atrophy in antiangiogenic therapy of neovascular age-related macular degeneration. Schütze C; Wedl M; Baumann B; Pircher M; Hitzenberger CK; Schmidt-Erfurth U Am J Ophthalmol; 2015 Jun; 159(6):1100-1114.e1. PubMed ID: 25769245 [TBL] [Abstract][Full Text] [Related]