BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 32832641)

  • 1. Codelivery of CRISPR-Cas9 and chlorin e6 for spatially controlled tumor-specific gene editing with synergistic drug effects.
    Deng S; Li X; Liu S; Chen J; Li M; Chew SY; Leong KW; Cheng D
    Sci Adv; 2020 Jul; 6(29):eabb4005. PubMed ID: 32832641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A DNA/Upconversion Nanoparticle Complex Enables Controlled Co-Delivery of CRISPR-Cas9 and Photodynamic Agents for Synergistic Cancer Therapy.
    Song N; Fan X; Guo X; Tang J; Li H; Tao R; Li F; Li J; Yang D; Yao C; Liu P
    Adv Mater; 2024 Apr; 36(15):e2309534. PubMed ID: 38199243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal coordination micelles for anti-cancer treatment by gene-editing and phototherapy.
    Zhang C; Wang X; Liu G; Ren H; Li J; Jiang Z; Liu J; Lovell JF; Zhang Y
    J Control Release; 2023 May; 357():210-221. PubMed ID: 36972864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unprotonatable and ROS-Sensitive Nanocarrier for NIR Spatially Activated siRNA Therapy with Synergistic Drug Effect.
    Deng S; Wang S; Xiao Z; Cheng D
    Small; 2022 Oct; 18(41):e2203823. PubMed ID: 36094800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled CRISPR-Cas9 Ribonucleoprotein Delivery for Sensitized Photothermal Therapy.
    Chen C; Ma Y; Du S; Wu Y; Shen P; Yan T; Li X; Song Y; Zha Z; Han X
    Small; 2021 Aug; 17(33):e2101155. PubMed ID: 34269521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sono-Controllable and ROS-Sensitive CRISPR-Cas9 Genome Editing for Augmented/Synergistic Ultrasound Tumor Nanotherapy.
    Pu Y; Yin H; Dong C; Xiang H; Wu W; Zhou B; Du D; Chen Y; Xu H
    Adv Mater; 2021 Nov; 33(45):e2104641. PubMed ID: 34536041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing.
    Zhang S; Shen J; Li D; Cheng Y
    Theranostics; 2021; 11(2):614-648. PubMed ID: 33391496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 and Chlorophyll Coordination Micelles for Cancer Treatment by Genome Editing and Photodynamic Therapy.
    Zhang C; Wang X; Liu G; Ren H; Liu J; Jiang Z; Zhang Y
    Small; 2023 Apr; 19(17):e2206981. PubMed ID: 36693779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing.
    Mout R; Ray M; Yesilbag Tonga G; Lee YW; Tay T; Sasaki K; Rotello VM
    ACS Nano; 2017 Mar; 11(3):2452-2458. PubMed ID: 28129503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-Infrared Light Activated Formulation for the Spatially Controlled Release of CRISPR-Cas9 Ribonucleoprotein for Brain Gene Editing.
    Simões S; Lino M; Barrera A; Rebelo C; Tomatis F; Vilaça A; Breunig C; Neuner A; Peça J; González R; Carvalho A; Stricker S; Ferreira L
    Angew Chem Int Ed Engl; 2024 May; 63(21):e202401004. PubMed ID: 38497898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physicochemical and Functional Characterization of Differential CRISPR-Cas9 Ribonucleoprotein Complexes.
    Camperi J; Moshref M; Dai L; Lee HY
    Anal Chem; 2022 Jan; 94(2):1432-1440. PubMed ID: 34958212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finely tuned ionizable lipid nanoparticles for CRISPR/Cas9 ribonucleoprotein delivery and gene editing.
    Im SH; Jang M; Park JH; Chung HJ
    J Nanobiotechnology; 2024 Apr; 22(1):175. PubMed ID: 38609947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes.
    Chen S; Lee B; Lee AY; Modzelewski AJ; He L
    J Biol Chem; 2016 Jul; 291(28):14457-67. PubMed ID: 27151215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-infrared upconversion-activated CRISPR-Cas9 system: A remote-controlled gene editing platform.
    Pan Y; Yang J; Luan X; Liu X; Li X; Yang J; Huang T; Sun L; Wang Y; Lin Y; Song Y
    Sci Adv; 2019 Apr; 5(4):eaav7199. PubMed ID: 30949579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic-assisted biomineralization of CRISPR/Cas9 in near-infrared responsive metal-organic frameworks for programmable gene-editing.
    Xu X; Liu C; Wang S; Mäkilä E; Wang J; Koivisto O; Zhou J; Rosenholm JM; Shu Y; Zhang H
    Nanoscale; 2022 Nov; 14(42):15832-15844. PubMed ID: 36255392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile modification of the CRISPR/Cas9 ribonucleoprotein system to facilitate in vivo application.
    Sun B; Chen H; Gao X
    J Control Release; 2021 Sep; 337():698-717. PubMed ID: 34364918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted Genome Editing Using DNA-Free RNA-Guided Cas9 Ribonucleoprotein for CHO Cell Engineering.
    Shin J; Lee N; Cho S; Cho BK
    Methods Mol Biol; 2018; 1772():151-169. PubMed ID: 29754227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaffold-Based Delivery of CRISPR/Cas9 Ribonucleoproteins for Genome Editing.
    Chooi WH; Chin JS; Chew SY
    Methods Mol Biol; 2021; 2211():183-191. PubMed ID: 33336278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quaternary ammonium-based nanosystem enables delivery of CRISPR/Cas9 for cancer therapy.
    Zhang M; Sun S; Liang X; Liu Z; Yin J; Li Q; Yang S
    Biomater Sci; 2024 Feb; 12(5):1197-1210. PubMed ID: 38240497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic Mineralization-Based CRISPR/Cas9 Ribonucleoprotein Nanoparticles for Gene Editing.
    Li S; Song Z; Liu C; Chen XL; Han H
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):47762-47770. PubMed ID: 31773942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.