BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32832935)

  • 21. C-terminus of the Sgf73 subunit of SAGA and SLIK is important for retention in the larger complex and for heterochromatin boundary function.
    Kamata K; Hatanaka A; Goswami G; Shinmyozu K; Nakayama J; Urano T; Hatashita M; Uchida H; Oki M
    Genes Cells; 2013 Sep; 18(9):823-37. PubMed ID: 23819448
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A synthetic non-histone substrate to study substrate targeting by the Gcn5 HAT and sirtuin HDACs.
    Rössl A; Denoncourt A; Lin MS; Downey M
    J Biol Chem; 2019 Apr; 294(16):6227-6239. PubMed ID: 30804216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and analysis of yeast nucleosomal histone acetyltransferase complexes.
    Eberharter A; John S; Grant PA; Utley RT; Workman JL
    Methods; 1998 Aug; 15(4):315-21. PubMed ID: 9740719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comprehensive analysis of interacting proteins and genome-wide location studies of the Sas3-dependent NuA3 histone acetyltransferase complex.
    Vicente-Muñoz S; Romero P; Magraner-Pardo L; Martinez-Jimenez CP; Tordera V; Pamblanco M
    FEBS Open Bio; 2014; 4():996-1006. PubMed ID: 25473596
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Promotion of Cell Viability and Histone Gene Expression by the Acetyltransferase Gcn5 and the Protein Phosphatase PP2A in Saccharomyces cerevisiae.
    Petty EL; Lafon A; Tomlinson SL; Mendelsohn BA; Pillus L
    Genetics; 2016 Aug; 203(4):1693-707. PubMed ID: 27317677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The STAGA subunit ADA2b is an important regulator of human GCN5 catalysis.
    Gamper AM; Kim J; Roeder RG
    Mol Cell Biol; 2009 Jan; 29(1):266-80. PubMed ID: 18936164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SAGA-associated Sgf73p facilitates formation of the preinitiation complex assembly at the promoters either in a HAT-dependent or independent manner in vivo.
    Shukla A; Bajwa P; Bhaumik SR
    Nucleic Acids Res; 2006; 34(21):6225-32. PubMed ID: 17090597
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo.
    Bhaumik SR; Green MR
    Mol Cell Biol; 2002 Nov; 22(21):7365-71. PubMed ID: 12370284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recruitment of chromatin remodelling factors during gene activation via the glucocorticoid receptor N-terminal domain.
    Wallberg AE; Flinn EM; Gustafsson JA; Wright AP
    Biochem Soc Trans; 2000; 28(4):410-4. PubMed ID: 10961930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. What do the structures of GCN5-containing complexes teach us about their function?
    Helmlinger D; Papai G; Devys D; Tora L
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194614. PubMed ID: 32739556
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo.
    Martinez E; Palhan VB; Tjernberg A; Lymar ES; Gamper AM; Kundu TK; Chait BT; Roeder RG
    Mol Cell Biol; 2001 Oct; 21(20):6782-95. PubMed ID: 11564863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The yeast histone acetyltransferase A2 complex, but not free Gcn5p, binds stably to nucleosomal arrays.
    Sendra R; Tse C; Hansen JC
    J Biol Chem; 2000 Aug; 275(32):24928-34. PubMed ID: 10825174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses.
    Moraga F; Aquea F
    Front Plant Sci; 2015; 6():865. PubMed ID: 26528322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multifaceted activities of the plant SAGA complex.
    Grasser KD; Rubio V; Barneche F
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194613. PubMed ID: 32745625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The ADA complex is a distinct histone acetyltransferase complex in Saccharomyces cerevisiae.
    Eberharter A; Sterner DE; Schieltz D; Hassan A; Yates JR; Berger SL; Workman JL
    Mol Cell Biol; 1999 Oct; 19(10):6621-31. PubMed ID: 10490601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel H2A/H4 nucleosomal histone acetyltransferase in Tetrahymena thermophila.
    Ohba R; Steger DJ; Brownell JE; Mizzen CA; Cook RG; Côté J; Workman JL; Allis CD
    Mol Cell Biol; 1999 Mar; 19(3):2061-8. PubMed ID: 10022893
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The SAGA coactivator complex acts on the whole transcribed genome and is required for RNA polymerase II transcription.
    Bonnet J; Wang CY; Baptista T; Vincent SD; Hsiao WC; Stierle M; Kao CF; Tora L; Devys D
    Genes Dev; 2014 Sep; 28(18):1999-2012. PubMed ID: 25228644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The SAGA continues: The rise of cis- and trans-histone crosstalk pathways.
    Strahl BD; Briggs SD
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194600. PubMed ID: 32645359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Gcn5 complexes in Drosophila as a model for metazoa.
    Torres-Zelada EF; Weake VM
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194610. PubMed ID: 32735945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conserved and plant-specific histone acetyltransferase complexes cooperate to regulate gene transcription and plant development.
    Wu CJ; Yuan DY; Liu ZZ; Xu X; Wei L; Cai XW; Su YN; Li L; Chen S; He XJ
    Nat Plants; 2023 Mar; 9(3):442-459. PubMed ID: 36879016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.