These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32832953)

  • 1. A microfluidic circuit consisting of individualized components with a 3D slope valve for automation of sequential liquid control.
    Kang DH; Kim NK; Park SW; Lee W; Kang HW
    Lab Chip; 2020 Nov; 20(23):4433-4441. PubMed ID: 32832953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Efficient 3D-Printed Gravity Mixer for Lab-on-a-CD Applications.
    Wang Y; Zhang Y; Qiao Z; Wang W
    Micromachines (Basel); 2024 Feb; 15(3):. PubMed ID: 38542538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VEGF Detection via Simplified FLISA Using a 3D Microfluidic Disk Platform.
    Kang DH; Kim NK; Park SW; Kang HW
    Biosensors (Basel); 2021 Aug; 11(8):. PubMed ID: 34436072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection.
    Wang CH; Lee GB
    Biosens Bioelectron; 2005 Sep; 21(3):419-25. PubMed ID: 16076430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms.
    Aeinehvand MM; Ibrahim F; Harun SW; Kazemzadeh A; Rothan HA; Yusof R; Madou M
    Lab Chip; 2015 Aug; 15(16):3358-69. PubMed ID: 26158597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-functional electrochemical sensing system using microfluidic technology for the detection of urea and creatinine.
    Huang CJ; Lin JL; Chen PH; Syu MJ; Lee GB
    Electrophoresis; 2011 Apr; 32(8):931-8. PubMed ID: 21437917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic reversible valves on centrifugal microfluidic platforms.
    Aeinehvand MM; Weber L; Jiménez M; Palermo A; Bauer M; Loeffler FF; Ibrahim F; Breitling F; Korvink J; Madou M; Mager D; Martínez-Chapa SO
    Lab Chip; 2019 Mar; 19(6):1090-1100. PubMed ID: 30785443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Actuation via 3D-Printed Molds toward Multiplex Biosensing of Cell Apoptosis.
    Dang BV; Hassanzadeh-Barforoushi A; Syed MS; Yang D; Kim SJ; Taylor RA; Liu GJ; Liu G; Barber T
    ACS Sens; 2019 Aug; 4(8):2181-2189. PubMed ID: 31321976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic automation using elastomeric valves and droplets: reducing reliance on external controllers.
    Kim SJ; Lai D; Park JY; Yokokawa R; Takayama S
    Small; 2012 Oct; 8(19):2925-34. PubMed ID: 22761019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-printed microfluidic automation.
    Au AK; Bhattacharjee N; Horowitz LF; Chang TC; Folch A
    Lab Chip; 2015 Apr; 15(8):1934-41. PubMed ID: 25738695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic control of elastomeric microfluidic circuits with shape memory actuators.
    Vyawahare S; Sitaula S; Martin S; Adalian D; Scherer A
    Lab Chip; 2008 Sep; 8(9):1530-5. PubMed ID: 18818809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable fluidic networks on centrifugal microfluidic discs.
    Julius LA; Torres Delgado SM; Mishra R; Kent N; Carthy E; Korvink JG; Mager D; Ducrée J; Kinahan DJ
    Anal Chim Acta; 2024 Feb; 1288():342159. PubMed ID: 38220291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic membrane enabled inward pumping for liquid manipulation on a centrifugal microfluidic platform.
    Liu Y; Kulinsky L; Shiri R; Madou M
    Biomicrofluidics; 2022 May; 16(3):034105. PubMed ID: 35607410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectrophotometric determination of aqueous sulfide on a pneumatically enhanced centrifugal microfluidic platform.
    Kong MC; Salin ED
    Anal Chem; 2012 Nov; 84(22):10038-43. PubMed ID: 23075273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated Droplet-Based Microfluidic Platform for Multiplexed Analysis of Biochemical Markers in Small Volumes.
    Cedillo-Alcantar DF; Han YD; Choi J; Garcia-Cordero JL; Revzin A
    Anal Chem; 2019 Apr; 91(8):5133-5141. PubMed ID: 30834743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications.
    Clime L; Brassard D; Geissler M; Veres T
    Lab Chip; 2015 Jun; 15(11):2400-11. PubMed ID: 25860103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully chip-embedded automation of a multi-step lab-on-a-chip process using a modularized timer circuit.
    Kang J; Lee D; Heo YJ; Chung WK
    Lab Chip; 2017 Nov; 17(22):3891-3897. PubMed ID: 29051929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of Mercury(II) on A Centrifugal Microfluidic Device Using Ionic Liquid Dispersive Liquid-Liquid Microextraction.
    Hui Y; Liu Y; Tang WC; Song D; Madou M; Xia S; Wu T
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31398936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autonomous microfluidic capillaric circuits replicated from 3D-printed molds.
    Olanrewaju AO; Robillard A; Dagher M; Juncker D
    Lab Chip; 2016 Sep; 16(19):3804-3814. PubMed ID: 27722504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic serial dilution circuit.
    Paegel BM; Grover WH; Skelley AM; Mathies RA; Joyce GF
    Anal Chem; 2006 Nov; 78(21):7522-7. PubMed ID: 17073422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.