These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 32833198)
1. A field strength independent MR radiomics model to predict pathological complete response in locally advanced rectal cancer. Cusumano D; Meijer G; Lenkowicz J; Chiloiro G; Boldrini L; Masciocchi C; Dinapoli N; Gatta R; Casà C; Damiani A; Barbaro B; Gambacorta MA; Azario L; De Spirito M; Intven M; Valentini V Radiol Med; 2021 Mar; 126(3):421-429. PubMed ID: 32833198 [TBL] [Abstract][Full Text] [Related]
2. Fractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancer. Cusumano D; Dinapoli N; Boldrini L; Chiloiro G; Gatta R; Masciocchi C; Lenkowicz J; Casà C; Damiani A; Azario L; Van Soest J; Dekker A; Lambin P; De Spirito M; Valentini V Radiol Med; 2018 Apr; 123(4):286-295. PubMed ID: 29230678 [TBL] [Abstract][Full Text] [Related]
3. Magnetic Resonance, Vendor-independent, Intensity Histogram Analysis Predicting Pathologic Complete Response After Radiochemotherapy of Rectal Cancer. Dinapoli N; Barbaro B; Gatta R; Chiloiro G; Casà C; Masciocchi C; Damiani A; Boldrini L; Gambacorta MA; Dezio M; Mattiucci GC; Balducci M; van Soest J; Dekker A; Lambin P; Fiorino C; Sini C; De Cobelli F; Di Muzio N; Gumina C; Passoni P; Manfredi R; Valentini V Int J Radiat Oncol Biol Phys; 2018 Nov; 102(4):765-774. PubMed ID: 29891200 [TBL] [Abstract][Full Text] [Related]
4. [A prediction model of pathological complete response in patients with locally advanced rectal cancer after PD-1 antibody combined with total neoadjuvant chemoradiotherapy based on MRI radiomics]. Zhang XY; Zhu HT; Li XT; Li YJ; Li ZW; Wang WH; Wu AW; Sun YS; Zhang L Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Mar; 25(3):228-234. PubMed ID: 35340172 [No Abstract] [Full Text] [Related]
5. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Cui Y; Yang X; Shi Z; Yang Z; Du X; Zhao Z; Cheng X Eur Radiol; 2019 Mar; 29(3):1211-1220. PubMed ID: 30128616 [TBL] [Abstract][Full Text] [Related]
6. Machine learning-based response assessment in patients with rectal cancer after neoadjuvant chemoradiotherapy: radiomics analysis for assessing tumor regression grade using T2-weighted magnetic resonance images. Lee YD; Kim HG; Seo M; Moon SK; Park SJ; You MW Int J Colorectal Dis; 2024 May; 39(1):78. PubMed ID: 38789861 [TBL] [Abstract][Full Text] [Related]
7. Can Pretreatment MRI and Planning CT Radiomics Improve Prediction of Complete Pathological Response in Locally Advanced Rectal Cancer Following Neoadjuvant Treatment? Ramireddy JK; Sathya A; Sasidharan BK; Varghese AJ; Sathyamurthy A; John NO; Chandramohan A; Singh A; Joel A; Mittal R; Masih D; Varghese K; Rebekah G; Ram TS; Thomas HMT J Gastrointest Cancer; 2024 Sep; 55(3):1199-1211. PubMed ID: 38856797 [TBL] [Abstract][Full Text] [Related]
8. Radiomics performs comparable to morphologic assessment by expert radiologists for prediction of response to neoadjuvant chemoradiotherapy on baseline staging MRI in rectal cancer. van Griethuysen JJM; Lambregts DMJ; Trebeschi S; Lahaye MJ; Bakers FCH; Vliegen RFA; Beets GL; Aerts HJWL; Beets-Tan RGH Abdom Radiol (NY); 2020 Mar; 45(3):632-643. PubMed ID: 31734709 [TBL] [Abstract][Full Text] [Related]
9. External Validation of Early Regression Index (ERI Cusumano D; Boldrini L; Yadav P; Yu G; Musurunu B; Chiloiro G; Piras A; Lenkowicz J; Placidi L; Broggi S; Romano A; Mori M; Barbaro B; Azario L; Gambacorta MA; De Spirito M; Bassetti MF; Yang Y; Fiorino C; Valentini V Int J Radiat Oncol Biol Phys; 2020 Dec; 108(5):1347-1356. PubMed ID: 32758641 [TBL] [Abstract][Full Text] [Related]
10. Predicting pathological complete response by comparing MRI-based radiomics pre- and postneoadjuvant radiotherapy for locally advanced rectal cancer. Li Y; Liu W; Pei Q; Zhao L; Güngör C; Zhu H; Song X; Li C; Zhou Z; Xu Y; Wang D; Tan F; Yang P; Pei H Cancer Med; 2019 Dec; 8(17):7244-7252. PubMed ID: 31642204 [TBL] [Abstract][Full Text] [Related]
11. Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Liu Z; Zhang XY; Shi YJ; Wang L; Zhu HT; Tang Z; Wang S; Li XT; Tian J; Sun YS Clin Cancer Res; 2017 Dec; 23(23):7253-7262. PubMed ID: 28939744 [No Abstract] [Full Text] [Related]
12. MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy. Horvat N; Veeraraghavan H; Khan M; Blazic I; Zheng J; Capanu M; Sala E; Garcia-Aguilar J; Gollub MJ; Petkovska I Radiology; 2018 Jun; 287(3):833-843. PubMed ID: 29514017 [TBL] [Abstract][Full Text] [Related]
13. MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer. Ferrari R; Mancini-Terracciano C; Voena C; Rengo M; Zerunian M; Ciardiello A; Grasso S; Mare' V; Paramatti R; Russomando A; Santacesaria R; Satta A; Solfaroli Camillocci E; Faccini R; Laghi A Eur J Radiol; 2019 Sep; 118():1-9. PubMed ID: 31439226 [TBL] [Abstract][Full Text] [Related]
14. Prognostic prediction value of the clinical-radiomics tumour-stroma ratio in locally advanced rectal cancer. Cai C; Hu T; Rong Z; Gong J; Tong T Eur J Radiol; 2024 Jan; 170():111254. PubMed ID: 38091662 [TBL] [Abstract][Full Text] [Related]
15. Radiomics-enhanced early regression index for predicting treatment response in rectal cancer: a multi-institutional 0.35 T MRI-guided radiotherapy study. Boldrini L; Chiloiro G; Cusumano D; Yadav P; Yu G; Romano A; Piras A; Votta C; Placidi L; Broggi S; Catucci F; Lenkowicz J; Indovina L; Bassetti MF; Yang Y; Fiorino C; Valentini V; Gambacorta MA Radiol Med; 2024 Apr; 129(4):615-622. PubMed ID: 38512616 [TBL] [Abstract][Full Text] [Related]
16. Evaluating treatment response to neoadjuvant chemoradiotherapy in rectal cancer using various MRI-based radiomics models. Li Z; Ma X; Shen F; Lu H; Xia Y; Lu J BMC Med Imaging; 2021 Feb; 21(1):30. PubMed ID: 33593304 [TBL] [Abstract][Full Text] [Related]
17. Analysis of MRI and CT-based radiomics features for personalized treatment in locally advanced rectal cancer and external validation of published radiomics models. Shahzadi I; Zwanenburg A; Lattermann A; Linge A; Baldus C; Peeken JC; Combs SE; Diefenhardt M; Rödel C; Kirste S; Grosu AL; Baumann M; Krause M; Troost EGC; Löck S Sci Rep; 2022 Jun; 12(1):10192. PubMed ID: 35715462 [TBL] [Abstract][Full Text] [Related]
18. MRI-based radiomics of rectal cancer: preoperative assessment of the pathological features. Ma X; Shen F; Jia Y; Xia Y; Li Q; Lu J BMC Med Imaging; 2019 Nov; 19(1):86. PubMed ID: 31747902 [TBL] [Abstract][Full Text] [Related]
19. Developing a prediction model based on MRI for pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Wan L; Zhang C; Zhao Q; Meng Y; Zou S; Yang Y; Liu Y; Jiang J; Ye F; Ouyang H; Zhao X; Zhang H Abdom Radiol (NY); 2019 Sep; 44(9):2978-2987. PubMed ID: 31327039 [TBL] [Abstract][Full Text] [Related]
20. Delta radiomics for rectal cancer response prediction with hybrid 0.35 T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach. Boldrini L; Cusumano D; Chiloiro G; Casà C; Masciocchi C; Lenkowicz J; Cellini F; Dinapoli N; Azario L; Teodoli S; Gambacorta MA; De Spirito M; Valentini V Radiol Med; 2019 Feb; 124(2):145-153. PubMed ID: 30374650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]