These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32833255)

  • 1. Coverage-Dependent Behaviors of Vanadium Oxides for Chemical Looping Oxidative Dehydrogenation.
    Chen S; Pei C; Chang X; Zhao ZJ; Mu R; Xu Y; Gong J
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22072-22079. PubMed ID: 32833255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulating Lattice Oxygen in Dual-Functional Mo-V-O Mixed Oxides for Chemical Looping Oxidative Dehydrogenation.
    Chen S; Zeng L; Mu R; Xiong C; Zhao ZJ; Zhao C; Pei C; Peng L; Luo J; Fan LS; Gong J
    J Am Chem Soc; 2019 Nov; 141(47):18653-18657. PubMed ID: 31703164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-temperature propane oxidative dehydrogenation over UiO-66 supported vanadia catalysts: Role of support confinement effects.
    Farzaneh A; Moghaddam MS
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):404-416. PubMed ID: 36166967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concerted oxygen diffusion across heterogeneous oxide interfaces for intensified propane dehydrogenation.
    Chen S; Luo R; Zhao ZJ; Pei C; Xu Y; Lu Z; Zhao C; Song H; Gong J
    Nat Commun; 2023 May; 14(1):2620. PubMed ID: 37147344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation.
    Venegas JM; McDermott WP; Hermans I
    Acc Chem Res; 2018 Oct; 51(10):2556-2564. PubMed ID: 30285416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous reactivity of supported V2O5 nanoparticles for propane oxidative dehydrogenation: influence of the vanadium oxide precursor.
    Carrero CA; Keturakis CJ; Orrego A; Schomäcker R; Wachs IE
    Dalton Trans; 2013 Sep; 42(35):12644-53. PubMed ID: 23652298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research Progress on Propylene Preparation by Propane Dehydrogenation.
    Zuo C; Su Q
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative determination of the speciation of surface vanadium oxides and their catalytic activity.
    Tian H; Ross EI; Wachs IE
    J Phys Chem B; 2006 May; 110(19):9593-600. PubMed ID: 16686507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersed Vanadium in Three-Dimensional Dendritic Mesoporous Silica Nanospheres: Active and Stable Catalysts for the Oxidative Dehydrogenation of Propane in the Presence of CO
    Xue XL; Lang WZ; Yan X; Guo YJ
    ACS Appl Mater Interfaces; 2017 May; 9(18):15408-15423. PubMed ID: 28425291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient and steady state investigation of selective and non-selective reaction pathways in the oxidative dehydrogenation of propane over supported vanadia catalysts.
    Kondratenko EV; Steinfeldt N; Baerns M
    Phys Chem Chem Phys; 2006 Apr; 8(13):1624-33. PubMed ID: 16633647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane.
    Vajda S; Pellin MJ; Greeley JP; Marshall CL; Curtiss LA; Ballentine GA; Elam JW; Catillon-Mucherie S; Redfern PC; Mehmood F; Zapol P
    Nat Mater; 2009 Mar; 8(3):213-6. PubMed ID: 19202544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling acid catalysis and selective oxidation over MoO
    Wang X; Pei C; Zhao ZJ; Chen S; Li X; Sun J; Song H; Sun G; Wang W; Chang X; Zhang X; Gong J
    Nat Commun; 2023 Apr; 14(1):2039. PubMed ID: 37041149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-dependent catalytic activity of supported vanadium oxide species: oxidative dehydrogenation of propane.
    Rozanska X; Fortrie R; Sauer J
    J Am Chem Soc; 2014 May; 136(21):7751-61. PubMed ID: 24828405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auto-accelerated dehydrogenation of alkane assisted by in-situ formed olefins over boron nitride under aerobic conditions.
    Liu Z; Liu Z; Fan J; Lu WD; Wu F; Gao B; Sheng J; Qiu B; Wang D; Lu AH
    Nat Commun; 2023 Jan; 14(1):73. PubMed ID: 36604430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near 100% CO selectivity in nanoscaled iron-based oxygen carriers for chemical looping methane partial oxidation.
    Liu Y; Qin L; Cheng Z; Goetze JW; Kong F; Fan JA; Fan LS
    Nat Commun; 2019 Dec; 10(1):5503. PubMed ID: 31796744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.
    Haibach MC; Kundu S; Brookhart M; Goldman AS
    Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Density Lewis Acid Sites in Porous Single-Crystalline Monoliths to Enhance Propane Dehydrogenation at Reduced Temperatures.
    Lin G; Su Y; Duan X; Xie K
    Angew Chem Int Ed Engl; 2021 Apr; 60(17):9311-9315. PubMed ID: 33569871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ UV-vis-NIR diffuse reflectance and Raman spectroscopy and catalytic activity studies of propane oxidative dehydrogenation over supported CrO3/ZrO2 catalysts.
    Malleswara Rao TV; Deo G; Jehng JM; Wachs IE
    Langmuir; 2004 Aug; 20(17):7159-65. PubMed ID: 15301500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption and oxidation of propane and cyclopropane on IrO
    Martin R; Kim M; Franklin A; Bian Y; Asthagiri A; Weaver JF
    Phys Chem Chem Phys; 2018 Nov; 20(46):29264-29273. PubMed ID: 30427331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and ab initio investigations of H2S-assisted propane oxidative dehydrogenation reactions.
    Premji ZA; Lo JM; Clark PD
    J Phys Chem A; 2014 Mar; 118(9):1541-56. PubMed ID: 24524187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.